Peng Shujun, Li Canrong, Wang Yifan, Yi Yuguo, Chen Xinyu, Yin Yujing, Yang Fan, Chen Fengzhi, Ouyang Yingyi, Xu Haolun, Chen Baicheng, Shi Haowen, Li Qingrun, Zhao Yu, Feng Lin, Gan Zhenji, Xie Xiaoduo
School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China.
State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Medical School of Nanjing University, Nanjing University, Nanjing, PR China.
Cell Death Differ. 2025 Apr 8. doi: 10.1038/s41418-025-01509-4.
Accumulating evidence indicates that metabolic enzymes can directly couple metabolic signals to transcriptional adaptation and cell differentiation. Glycogen synthase 1 (GYS1), the key metabolic enzyme for glycogenesis, is a nucleocytoplasmic shuttling protein compartmentalized in the cytosol and nucleus. However, the spatiotemporal regulation and biological function of nuclear GYS1 (nGYS1) microcompartments remain unclear. Here, we show that GYS1 dynamically reorganizes into nuclear condensates under conditions of glycogen depletion or transcription inhibition. nGYS1 complexes with the transcription factor NONO/p54 and undergoes liquid-liquid phase separation to form biomolecular condensates, leading to its nuclear retention and inhibition of glycogen biosynthesis. Compared to their wild-type littermates, Nono-deficient mice exhibit exercise intolerance, higher muscle glycogen content, and smaller myofibers. Additionally, Gys1 or Nono deficiency prevents C2C12 differentiation and cardiotoxin-induced muscle regeneration in mice. Mechanistically, nGYS1 and NONO co-condense with the myogenic transcription factor MyoD and preinitiation complex (PIC) proteins to form transcriptional condensates, driving myogenic gene expression during myoblast differentiation. These results reveal the spatiotemporal regulation and subcellular function of nuclear GYS1 condensates in glycogenesis and myogenesis, providing mechanistic insights into glycogenoses and muscular dystrophy.
越来越多的证据表明,代谢酶可以将代谢信号直接与转录适应性和细胞分化联系起来。糖原合酶1(GYS1)是糖原生成的关键代谢酶,是一种在细胞质和细胞核中进行区室化分布的核质穿梭蛋白。然而,细胞核GYS1(nGYS1)微区室的时空调控及其生物学功能仍不清楚。在此,我们表明,在糖原耗竭或转录抑制的条件下,GYS1会动态重组为核凝聚物。nGYS1与转录因子NONO/p54结合,并经历液-液相分离以形成生物分子凝聚物,导致其在细胞核内滞留并抑制糖原生物合成。与野生型同窝小鼠相比,Nono基因敲除的小鼠表现出运动不耐受、肌肉糖原含量更高和肌纤维更小。此外,Gys1或Nono基因缺失会阻止小鼠C2C12细胞分化以及心脏毒素诱导的肌肉再生。从机制上讲,nGYS1和NONO与成肌转录因子MyoD和前起始复合物(PIC)蛋白共同凝聚,形成转录凝聚物,在成肌细胞分化过程中驱动成肌基因表达。这些结果揭示了核GYS1凝聚物在糖原生成和肌生成中的时空调控及亚细胞功能,为糖原贮积病和肌肉营养不良提供了机制上的见解。