Parra-Calderón Carlos Luis, Finocchiaro Giulia, Ul Islam Saif, Harrison Stuart, Epiphaniou Gregory, Maple Carsten, Gallos Parisis
Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
European Federation for Medical Informatics, Switzerland.
Stud Health Technol Inform. 2025 Apr 8;323:270-274. doi: 10.3233/SHTI250093.
This paper presents a structured framework to assess the implementation of FAIR (Findable, Accessible, Interoperable, Reusable) principles in health datasets used in regulatory processes for digital health devices. With the FAIR Data Maturity Model from the Research Data Alliance (RDA) and the Pistoia Alliance's FAIR Maturity Matrix as foundational guides, this framework provides a scalable, adaptable approach for evaluating dataset readiness and compliance with regulatory requirements. By focusing on metadata quality, interoperability, and privacy, this study supports regulatory bodies and developers in aligning with FAIR principles, enhancing transparency, and ensuring that data meets the standards necessary for digital health device approval.
本文提出了一个结构化框架,用于评估在数字健康设备监管流程中使用的健康数据集中FAIR(可查找、可访问、可互操作、可重用)原则的实施情况。以研究数据联盟(RDA)的FAIR数据成熟度模型和皮斯托亚联盟的FAIR成熟度矩阵为基础指南,该框架提供了一种可扩展、可适应的方法,用于评估数据集的准备情况以及是否符合监管要求。通过关注元数据质量、互操作性和隐私,本研究支持监管机构和开发者遵循FAIR原则,提高透明度,并确保数据符合数字健康设备批准所需的标准。