Suppr超能文献

公开可用的年龄相关性黄斑变性成像数据集:根据可查找、可访问、可互操作、可重用(FAIR)原则进行评估。

Publicly available imaging datasets for age-related macular degeneration: Evaluation according to the Findable, Accessible, Interoperable, Reusable (FAIR) principles.

作者信息

Gim Nayoon, Ferguson Alina, Blazes Marian, Soundarajan Sanjay, Gasimova Aydan, Jiang Yu, Sánchez Clara I, Zalunardo Luca, Corradetti Giulia, Elze Tobias, Honda Naoto, Waheed Nadia K, Cairns Anne Marie, Canto-Soler M Valeria, Domalpally Amitha, Durbin Mary, Ferrara Daniela, Hu Jewel, Nair Prashant, Lee Aaron Y, Sadda Srinivas R, Keenan Tiarnan D L, Patel Bhavesh, Lee Cecilia S

机构信息

Department of Ophthalmology, University of Washington, Seattle, WA, USA; Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.

Department of Ophthalmology, University of Washington, Seattle, WA, USA; Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA; University of Washington School of Medicine, Seattle, WA, USA.

出版信息

Exp Eye Res. 2025 Jun;255:110342. doi: 10.1016/j.exer.2025.110342. Epub 2025 Mar 13.

Abstract

Age-related macular degeneration (AMD), a leading cause of vision loss among older adults, affecting more than 200 million people worldwide. With no cure currently available and a rapidly increasing prevalence, emerging approaches such as artificial intelligence (AI) and machine learning (ML) hold promise for advancing the study of AMD. The effective utilization of AI and ML in AMD research is highly dependent on access to high-quality and reusable clinical data. The Findable, Accessible, Interoperable, Reusable (FAIR) principles, published in 2016, provide a framework for sharing data that is easily useable by both humans and machines. However, it is unclear how these principles are implemented with regards to ophthalmic imaging datasets for AMD research. We evaluated openly available AMD-related datasets containing optical coherence tomography (OCT) data against the FAIR principles. The assessment revealed that none of the datasets were fully compliant with FAIR principles. Specifically, compliance rates were 5 % for Findable, 82 % for Accessible, 73 % for Interoperable, and 0 % for Reusable. The low compliance rates can be attributed to the relatively recent emergence of these principles and the lack of established standards for data and metadata formatting in the AMD research community. This article presents our findings and offers guidelines for adopting FAIR practices to enhance data sharing in AMD research.

摘要

年龄相关性黄斑变性(AMD)是老年人视力丧失的主要原因,全球有超过2亿人受其影响。由于目前尚无治愈方法且患病率迅速上升,人工智能(AI)和机器学习(ML)等新兴方法有望推动AMD的研究。在AMD研究中有效利用AI和ML高度依赖于获取高质量且可重复使用的临床数据。2016年发布的可查找、可访问、可互操作、可重复使用(FAIR)原则提供了一个数据共享框架,便于人类和机器使用。然而,尚不清楚这些原则在AMD研究的眼科成像数据集方面是如何实施的。我们对照FAIR原则评估了公开可用的包含光学相干断层扫描(OCT)数据的AMD相关数据集。评估显示,没有一个数据集完全符合FAIR原则。具体而言,可查找性的符合率为5%,可访问性为82%,可互操作性为73%,可重复使用性为0%。符合率低可归因于这些原则相对较新出现,以及AMD研究社区缺乏既定的数据和元数据格式标准。本文介绍了我们的研究结果,并提供了采用FAIR实践以加强AMD研究中数据共享的指导方针。

相似文献

3
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
4
Imaging and artificial intelligence for progression of age-related macular degeneration.
Exp Biol Med (Maywood). 2021 Oct;246(20):2159-2169. doi: 10.1177/15353702211031547. Epub 2021 Aug 18.
7
FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research.
Open Res Eur. 2022 May 31;2:34. doi: 10.12688/openreseurope.14349.2. eCollection 2022.
8
Moving Toward Findable, Accessible, Interoperable, Reusable Practices in Epidemiologic Research.
Am J Epidemiol. 2023 Jun 2;192(6):995-1005. doi: 10.1093/aje/kwad040.
9
Artificial intelligence in age-related macular degeneration: state of the art and recent updates.
BMC Ophthalmol. 2024 Mar 15;24(1):121. doi: 10.1186/s12886-024-03381-1.

引用本文的文献

本文引用的文献

1
OCT5k: A dataset of multi-disease and multi-graded annotations for retinal layers.
Sci Data. 2025 Feb 14;12(1):267. doi: 10.1038/s41597-024-04259-z.
2
OCTDL: Optical Coherence Tomography Dataset for Image-Based Deep Learning Methods.
Sci Data. 2024 Apr 11;11(1):365. doi: 10.1038/s41597-024-03182-7.
6
Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.
Eye (Lond). 2023 Dec;37(18):3793-3800. doi: 10.1038/s41433-023-02615-8. Epub 2023 Jun 13.
7
Prevalence of Age-Related Macular Degeneration in the US in 2019.
JAMA Ophthalmol. 2022 Dec 1;140(12):1202-1208. doi: 10.1001/jamaophthalmol.2022.4401.
8
The Role of Retinal Plasticity in the Formation of Irreversible Retinal Deformations in Age-Related Macular Degeneration.
Curr Eye Res. 2022 Jul;47(7):1043-1049. doi: 10.1080/02713683.2022.2059810. Epub 2022 May 16.
9
Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
Comput Biol Med. 2022 May;144:105368. doi: 10.1016/j.compbiomed.2022.105368. Epub 2022 Mar 2.
10
ELIXIR: providing a sustainable infrastructure for life science data at European scale.
Bioinformatics. 2021 Aug 25;37(16):2506-2511. doi: 10.1093/bioinformatics/btab481.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验