Xu Chengyong, Li Min, Sui Nianzi, Kang Kaixiang, Shao Shuangshuang, Deng Meng, Zhang Qinjun, Jiao Lei, Qiu Chenguang, Zhao Jianwen
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
Key Laboratory of Semiconductor Display Materials and Chips, Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
Small. 2025 Jun;21(22):e2412324. doi: 10.1002/smll.202412324. Epub 2025 Apr 8.
Optoelectronic synaptic devices are promising candidate components for brain-like efficient neuromorphic computing systems. The development of highly-selective near-infrared (NIR) optoelectronic synaptic devices is important for realizing more efficient optical computing, night monitoring, and robot visual perception. In this work, ultralow-power (56 aJ per light pulse), NIR (≈850 nm) highly-selective optoelectronic synaptic transistor devices based on carbon nanotube thin film transistors are developed by modification of the organic photosensitive material in the device channels. The optoelectronic synaptic devices showed high sensitivity and selectivity to 850 nm pulse light. It is noted that optoelectronic response currents of the optoelectronic synaptic transistor devices after stimulation by a single 850 nm pulse light can be nearly six times higher than those stimulated by single pulse UV light, which is attributed that IHIC has a low bandgap, strong NIR absorption, and ideal energy band alignment with carbon nanotubes. Under pulsed light stimulation, a range of complex synaptic functions are exhibited, including excitatory postsynaptic currents, paired-pulse facilitation, and the transition from short-term plasticity to long-term plasticity, spike-timing-dependent plasticity, and image perception and memory functions. Significantly, the real-time trajectory tracking of the car by the drone under nighttime conditions is successfully simulated using the optoelectronic synaptic transistor array.
光电突触器件是类脑高效神经形态计算系统中很有前景的候选组件。开发高选择性近红外(NIR)光电突触器件对于实现更高效的光学计算、夜间监测和机器人视觉感知至关重要。在这项工作中,通过对器件沟道中的有机光敏材料进行改性,开发出了基于碳纳米管薄膜晶体管的超低功耗(每个光脉冲56阿焦耳)、近红外(≈850纳米)高选择性光电突触晶体管器件。该光电突触器件对850纳米脉冲光表现出高灵敏度和选择性。值得注意的是,单个850纳米脉冲光刺激后的光电突触晶体管器件的光电响应电流可比单个脉冲紫外光刺激后的电流高出近六倍,这归因于吲哚并异吲哚啉酮(IHIC)具有低带隙、强近红外吸收以及与碳纳米管理想的能带对准。在脉冲光刺激下,展现出一系列复杂的突触功能,包括兴奋性突触后电流、双脉冲易化以及从短期可塑性到长期可塑性的转变、尖峰时间依赖可塑性以及图像感知和记忆功能。重要的是,利用光电突触晶体管阵列成功模拟了无人机在夜间条件下对汽车的实时轨迹跟踪。