Suppr超能文献

基于血栓弹力图等凝血指标和神经网络的胃肠道肿瘤恶性程度预测模型

Prediction model of gastrointestinal tumor malignancy based on coagulation indicators such as TEG and neural networks.

作者信息

Yu Fulong, Sun Chudi, Li Liang, Yu Xiaoyu, Shen Shumin, Qiang Hao, Wang Song, Li Xianghua, Zhang Lin, Liu Zhining

机构信息

Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.

School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, China.

出版信息

Front Immunol. 2025 Mar 25;16:1507773. doi: 10.3389/fimmu.2025.1507773. eCollection 2025.

Abstract

OBJECTIVES

Accurate determination of gastrointestinal tumor malignancy is a crucial focus of clinical research. Constructing coagulation index models using big data is feasible to achieve this goal. This study builds various prediction models through machine learning methods based on the different coagulation statuses under varying malignancy levels of gastrointestinal tumors. The aim is to use coagulation indicators to predict the malignancy of gastrointestinal tumors, expand the methods and ideas for coagulation index tumor prediction, and identify independent risk factors for gastrointestinal tumor malignancy.

METHODS

Clinical data of 300 patients with gastrointestinal diseases were collected from the Second Affiliated Hospital of Anhui Medical University from January 2024 to August 2024 and grouped according to TNM and G staging, representing tumor malignancy levels. First, independent influencing factors of gastrointestinal tumor malignancy were identified using stepwise multivariate logistic regression. ROC curves were used to assess the ability of TEG five items and other coagulation indicators to distinguish between malignancy levels of gastrointestinal tumors. Finally, we constructed a network model suitable for our task data based on residual networks, named the Residual Fully Connected Binary Classifier (RFCBC). This model was compared with other commonly used binary classification methods to select the optimal model.

RESULTS

The TEG five items (AUC values: R: 0.682; K: 0.731; α-angle: 0.736; MA: 0.699; CI: 0.747) showed better discrimination ability in the G group than other coagulation indicators. Although the TNM group showed moderate discrimination ability, it did not exhibit a significant advantage over other indicators. The R and MA values were identified as independent influencing factors in both TNM and G groups. Ultimately, the RFCBC prediction model showed the best predictive performance compared to other binary classification machine learning models (TEG five items: 87.56%; Thromboelastogram et al.: 88.6%).

CONCLUSION

This study found that the R and MA values are independent predictive factors for the malignancy of gastrointestinal tumors. Compared to other coagulation indicators, the TEG five items have better discrimination ability regarding tumor malignancy. The RFCBC model created in this study outperforms other commonly used binary classification methods in predicting the malignancy of gastrointestinal tumors, providing a new model construction method and feasible approach for future coagulation index prediction of gastrointestinal tumor malignancy.

摘要

目的

准确判定胃肠道肿瘤的恶性程度是临床研究的关键重点。利用大数据构建凝血指标模型来实现这一目标是可行的。本研究通过机器学习方法,基于胃肠道肿瘤不同恶性程度下的不同凝血状态构建各种预测模型。目的是利用凝血指标预测胃肠道肿瘤的恶性程度,拓展凝血指标肿瘤预测的方法和思路,并识别胃肠道肿瘤恶性程度的独立危险因素。

方法

收集2024年1月至2024年8月安徽医科大学第二附属医院300例胃肠道疾病患者的临床资料,并根据TNM和G分期进行分组,分别代表肿瘤的恶性程度。首先,采用逐步多因素逻辑回归确定胃肠道肿瘤恶性程度的独立影响因素。利用ROC曲线评估血栓弹力图五项指标及其他凝血指标区分胃肠道肿瘤恶性程度的能力。最后,基于残差网络构建适合本任务数据的网络模型,命名为残差全连接二分类器(RFCBC)。将该模型与其他常用的二分类方法进行比较,以选择最优模型。

结果

血栓弹力图五项指标(AUC值:R:0.682;K:0.731;α角:0.736;MA:0.699;CI:0.747)在G组中比其他凝血指标表现出更好的区分能力。虽然TNM组显示出中等区分能力,但与其他指标相比未表现出显著优势。R和MA值在TNM组和G组中均被确定为独立影响因素。最终,与其他二分类机器学习模型相比,RFCBC预测模型表现出最佳预测性能(血栓弹力图五项指标:87.56%;血栓弹力图等:88.6%)。

结论

本研究发现R和MA值是胃肠道肿瘤恶性程度的独立预测因素。与其他凝血指标相比,血栓弹力图五项指标对肿瘤恶性程度具有更好的区分能力。本研究创建的RFCBC模型在预测胃肠道肿瘤恶性程度方面优于其他常用的二分类方法,为未来胃肠道肿瘤恶性程度的凝血指标预测提供了一种新的模型构建方法和可行途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27dd/11975555/13563b19dd27/fimmu-16-1507773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验