Suppr超能文献

肠道微生物、衰老指标与年龄相关疾病之间的因果分析,包括生物标志物的发现与验证

Causal Analysis Between Gut Microbes, Aging Indicator, and Age-Related Disease, Involving the Discovery and Validation of Biomarkers.

作者信息

Lu Chunrong, Wang Xiaojun, Chen Xiaochun, Qin Tao, Ye Pengpeng, Liu Jianqun, Wang Shuai, Luo Weifei

机构信息

AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China.

Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China.

出版信息

Aging Cell. 2025 Jul;24(7):e70057. doi: 10.1111/acel.70057. Epub 2025 Apr 9.

Abstract

The influence of gut microbes on aging has been reported in several studies, but the mediating pathways of gut microbiota, whether there is a causal relationship between the two, and biomarker screening and validation have not been fully discussed. In this study, Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC) are used to systematically investigate the associations between gut microbiota, three aging indicators, and 14 age-related diseases. Additionally, this study integrates machine learning algorithms to explore the potential of MR and LDSC methods for biomarker screening. Gut microbiota is found to be a potential risk factor for 14 age-related diseases. The causal effects of gut microbiota on chronic kidney disease, cirrhosis, and heart failure are partially mediated by aging indicators. Additionally, gut microbiota identified through MR and LDSC methods exhibit biomarker properties for disease prediction (average AUC = 0.731). These methods can serve as auxiliary tools for conventional biomarker screening, effectively enhancing the performance of disease models (average AUC increased from 0.808 to 0.832). This study provides evidence that supports the association between the gut microbiota and aging and highlights the potential of genetic correlation and causal relationship analysis in biomarker discovery. These findings may help to develop new approaches for healthy aging detection and intervention.

摘要

多项研究报道了肠道微生物对衰老的影响,但肠道微生物群的介导途径、两者之间是否存在因果关系以及生物标志物的筛选和验证尚未得到充分讨论。在本研究中,采用孟德尔随机化(MR)和连锁不平衡评分回归(LDSC)系统地研究肠道微生物群、三个衰老指标和14种与年龄相关疾病之间的关联。此外,本研究整合机器学习算法,探索MR和LDSC方法在生物标志物筛选方面的潜力。研究发现肠道微生物群是14种与年龄相关疾病的潜在危险因素。肠道微生物群对慢性肾病、肝硬化和心力衰竭的因果效应部分由衰老指标介导。此外,通过MR和LDSC方法鉴定的肠道微生物群具有疾病预测的生物标志物特性(平均AUC = 0.731)。这些方法可作为传统生物标志物筛选的辅助工具,有效提高疾病模型的性能(平均AUC从0.808提高到0.832)。本研究提供了支持肠道微生物群与衰老之间关联的证据,并突出了遗传相关性和因果关系分析在生物标志物发现中的潜力。这些发现可能有助于开发健康衰老检测和干预的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e19c/12266770/2e31a3ea1027/ACEL-24-e70057-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验