Yang Sangjin, Huang Xuexiang, Cho Yongjoon, Koo Sungmo, Ouyang Yanni, Sun Zhe, Jeong Seonghun, Mai Thi Le Huyen, Kim Wonjun, Zhong Lian, Chen Shanshan, Zhang Chunfeng, Lee Hee-Seung, Yoon Seong-Jun, Chen Lie, Yang Changduk
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea.
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, China.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202424287. doi: 10.1002/anie.202424287. Epub 2025 Apr 18.
The symmetry-breaking design strategy of nonfullerene acceptor can improve the performance of semitransparent organic solar cells (ST-OSCs). However, no report exists on the "asymmetric molecular interaction" induced by symmetric molecular structure in nonfullerene acceptors. Herein, we showcase that 2D fluorophenyl outer groups in symmetric 4FY promote dipole-driven self-assembly through asymmetric molecular interactions, resulting in a tighter packed structure than Y6 with the same symmetric geometry. Such unique properties lead to high-performance layer-by-layer OSCs, accompanied by simultaneously reduced energy and recombination losses and improved charge-related characteristics. ST-OSCs based on PCE10-2F/4FY achieve notable power conversion efficiency (PCE) of 10.81%, average visible transmittance of 45.43%, and light utilization efficiency (LUE) of 4.91%. Moreover, exceptional diurnal cycling stability is observed in the ST-OSCs based on PCE10-2F/4FY with much prolonged T up to 134 h, which is about 17 times greater than the reference PCE10-2F/Y6. Lastly, we fabricate highly efficient semitransparent organic solar modules based on PCE10-2F/4FY (active area of 18 cm), which shows PCE of 6.78% and the highest LUE of 3.10% to date for all-narrow bandgap semitransparent organic solar modules. This work demonstrates that asymmetry-driven molecular interactions can be leveraged to fabricate large-area ST-OSCs that are efficient and stable under realistic operating conditions.
非富勒烯受体的破对称设计策略可提升半透明有机太阳能电池(ST-OSCs)的性能。然而,关于非富勒烯受体中对称分子结构所引发的“不对称分子相互作用”尚无相关报道。在此,我们展示了对称的4FY中的二维氟苯基外围基团通过不对称分子相互作用促进偶极驱动的自组装,从而形成比具有相同对称几何结构的Y6更为紧密堆积的结构。这种独特性质造就了高性能的逐层有机太阳能电池,同时降低了能量损失和复合损失,并改善了与电荷相关的特性。基于PCE10-2F/4FY的ST-OSCs实现了10.81%的显著功率转换效率(PCE)、45.43%的平均可见光透过率以及4.91%的光利用效率(LUE)。此外,基于PCE10-2F/4FY的ST-OSCs展现出卓越的昼夜循环稳定性,其T延长至134小时,约为参比PCE10-2F/Y6的17倍。最后,我们制备了基于PCE10-2F/4FY(活性面积为18平方厘米)的高效半透明有机太阳能模块,其PCE为6.78%,对于所有窄带隙半透明有机太阳能模块而言,是目前最高的光利用效率,达到3.10%。这项工作表明,不对称驱动的分子相互作用可用于制造在实际运行条件下高效且稳定的大面积ST-OSCs。