Fuller Stephen T, Zheng J-X Kent
Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712.
Texas Materials Institute, University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2425752122. doi: 10.1073/pnas.2425752122. Epub 2025 Apr 9.
The solid-electrolyte interphase (SEI) formed on a battery electrode has been a central area of research for decades. This structurally complex layer profoundly impacts the electrochemical deposition morphology and stability of metal anodes. Departing from conventional approaches, we investigate metal dissolution-the reverse reaction of deposition-in battery environments using a state-of-the-art electroanalytical system combining a rotating-disk electrode and operando visualization. Our key finding is the presence of a transient SEI (T-SEI) that forms during fast discharging at high dissolution rates. We attribute T-SEI formation to local supersaturation and resultant electrolyte salt deposition. The T-SEI fundamentally alters the dissolution kinetics at the electrochemical interface, yielding a flat, clean surface. Unlike a classical SEI formed due to electrolyte decomposition, the T-SEI is "relaxable" upon removal of the enforced dissolution current; that is, the T-SEI dissolves back into the electrolyte when rested. The formation of T-SEI plays an unexpected critical role in the subsequent electrodeposition. When the metal is redeposited on a fully relaxed T-SEI surface, the morphology is remarkably different from that deposited on pristine or low-rate-discharged metal electrodes. Electron backscatter diffraction analysis suggests that the deposition occurs via growth of the original grains; this is in stark contrast to the isolated, new nuclei seen on standard metal electrodes without T-SEI formation. Using 3D profilometry, we observe a 42% reduction in surface roughness due to T-SEI formation. Our findings provide important insights into the kinetics at ion-producing electrochemical interfaces, and suggest a new dimension for engineering next generation batteries.
几十年来,电池电极上形成的固体电解质界面(SEI)一直是研究的核心领域。这个结构复杂的层对金属阳极的电化学沉积形态和稳定性有着深远影响。与传统方法不同,我们使用结合旋转圆盘电极和原位可视化的先进电分析系统,研究电池环境中金属溶解(沉积的逆反应)。我们的关键发现是在高溶解速率的快速放电过程中会形成瞬态SEI(T-SEI)。我们将T-SEI的形成归因于局部过饱和以及由此产生的电解质盐沉积。T-SEI从根本上改变了电化学界面处的溶解动力学,产生了一个平整、干净的表面。与因电解质分解而形成的经典SEI不同,当强制溶解电流去除后,T-SEI是“可松弛的”;也就是说,静置时T-SEI会重新溶解回到电解质中。T-SEI的形成在随后的电沉积过程中发挥了意想不到的关键作用。当金属重新沉积在完全松弛的T-SEI表面时,其形态与沉积在原始或低速率放电金属电极上的形态显著不同。电子背散射衍射分析表明,沉积是通过原始晶粒的生长发生的;这与在没有形成T-SEI的标准金属电极上看到的孤立新核形成形成鲜明对比。使用三维轮廓仪,我们观察到由于T-SEI的形成,表面粗糙度降低了42%。我们的发现为离子产生的电化学界面的动力学提供了重要见解,并为下一代电池的工程设计提出了一个新的维度。