Suppr超能文献

影响尼日利亚青少年母亲采用移动健康进行抑郁症护理和支持的因素:初步焦点小组研究

Factors Impacting Mobile Health Adoption for Depression Care and Support by Adolescent Mothers in Nigeria: Preliminary Focus Group Study.

作者信息

Kola Lola, Fatodu Tobi, Kola Manasseh, Olayemi Bisola A, Adefolarin Adeyinka O, Dania Simpa, Kumar Manasi, Ben-Zeev Dror

机构信息

WHO Collaborating Centre for Research and Training in Mental Health, Neurosciences and Drug and Alcohol Abuse, Department of Psychiatry, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Centre for Global Mental Health, Kings College London, London, United Kingdom.

出版信息

JMIR Form Res. 2025 Apr 9;9:e42406. doi: 10.2196/42406.

Abstract

BACKGROUND

Mobile health (mHealth), the use of mobile technology in health care, is increasingly being used for mental health service delivery even in low- and middle-income countries to scale up treatment, and a variety of evidence supports their potential in different populations.

OBJECTIVE

This study aims to use the Social Cognitive Theory (SCT) as a lens to explain knowledge of mHealth use for mental health care, personal behavioral capabilities, and the external social contexts that can impact the adoption of an mHealth app for depression care among perinatal adolescents in Nigeria.

METHODS

At the preliminary stage of a user-centered design (UCD), 4 focus group discussions were conducted among 39 participants: 19 perinatal adolescents with a history of depression and 20 primary care providers. Guided by the SCT, a popular model used for predicting and explaining health behaviors, we documented participants' knowledge of mHealth use for health purposes, advantages, and challenges to the adoption of an mHealth app by young mothers, and approaches to mitigate challenges. Data collection and analysis was an iterative process until saturation of all topic areas was reached.

RESULTS

The mean age for young mothers was 17.3 (SD 0.9) years and 48 (SD 5.8) years for care providers. Mistrust from relatives on mobile phone use for therapeutic purposes, avoidance of clinic appointments, and sharing of application contents with friends were some challenges to adoption identified in the study population. Supportive personal factors and expressions of self-efficacy on mobile app use were found to be insufficient for adoption. This is because there are social complications and disapprovals that come along with getting pregnant at a young age. Adequate engagement of parents, guardians, and partners on mHealth solutions by care providers was identified as necessary to the uptake of digital tools for mental health care in this population.

CONCLUSIONS

The SCT guided the interpretations of the study findings. Young mothers expressed excitement at the use of mHealth technology to manage perinatal depression. Real-life challenges, however, need to be attended to for successful implementation of such interventions. Communications between care providers and patients' relatives on the therapeutic use of mHealth are vital to the success of a mHealth mental health management plan for depression in young mothers in Nigeria.

摘要

背景

移动健康(mHealth),即在医疗保健中使用移动技术,甚至在低收入和中等收入国家也越来越多地用于心理健康服务提供,以扩大治疗规模,并且各种证据支持其在不同人群中的潜力。

目的

本研究旨在以社会认知理论(SCT)为视角,解释尼日利亚围产期青少年对用于心理健康护理的移动健康使用的知识、个人行为能力以及可能影响采用用于抑郁症护理的移动健康应用程序的外部社会环境。

方法

在以用户为中心的设计(UCD)的初步阶段,对39名参与者进行了4次焦点小组讨论:19名有抑郁症病史的围产期青少年和20名初级保健提供者。在用于预测和解释健康行为的流行模型SCT的指导下,我们记录了参与者对用于健康目的的移动健康使用的知识、优势、年轻母亲采用移动健康应用程序的挑战以及减轻挑战的方法。数据收集和分析是一个迭代过程,直到所有主题领域达到饱和。

结果

年轻母亲的平均年龄为17.3(标准差0.9)岁,护理提供者的平均年龄为48(标准差5.8)岁。研究人群中确定的采用移动健康应用程序的一些挑战包括亲属对将手机用于治疗目的的不信任、避免门诊预约以及与朋友分享应用程序内容。发现支持性的个人因素和对移动应用程序使用的自我效能感表达不足以促进采用。这是因为年轻时怀孕会带来社会复杂性和不认可。护理提供者让父母、监护人和伴侣充分参与移动健康解决方案被确定为该人群采用数字心理健康护理工具的必要条件。

结论

SCT指导了对研究结果的解释。年轻母亲对使用移动健康技术管理围产期抑郁症表示兴奋。然而,要成功实施此类干预措施,需要关注现实生活中的挑战。护理提供者与患者亲属就移动健康的治疗用途进行沟通对于尼日利亚年轻母亲抑郁症移动健康心理健康管理计划的成功至关重要。

相似文献

本文引用的文献

10
The Lancet Commission on global mental health and sustainable development.柳叶刀全球精神卫生与可持续发展委员会
Lancet. 2018 Oct 27;392(10157):1553-1598. doi: 10.1016/S0140-6736(18)31612-X. Epub 2018 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验