Suppr超能文献

基于深度学习的精准农业非生物作物胁迫评估:全面综述

Deep learning based abiotic crop stress assessment for precision agriculture: A comprehensive review.

作者信息

Subeesh A, Chauhan Naveen

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, HP, 177005, India; Agricultural Mechanization Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, 462038, MP, India.

Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, HP, 177005, India.

出版信息

J Environ Manage. 2025 May;381:125158. doi: 10.1016/j.jenvman.2025.125158. Epub 2025 Apr 9.

Abstract

Abiotic stresses are a leading cause of crop loss and a severe peril to global food security. Precise and prompt identification of abiotic stresses in crops is crucial for effective mitigation strategies. In recent years, Deep learning (DL) techniques have demonstrated remarkable promise for high-throughput crop stress phenotyping using remote sensing and field data. This study offers a comprehensive review of the applications of DL models like artificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks (RNN), vision transformers (ViT), and other advanced deep learning architectures for abiotic crop stress assessment using different modalities like IoT sensor data, thermal, spectral, RGB with field, UAV and satellite based imagery. The study comprehensively analyses the abiotic stress conditions due to (a) water (b) nutrients (c) salinity (d) temperature and (e) heavy metal. Key contributions in the literature on stress classification, localization, and quantification using deep learning approaches are discussed in detail. The study also covers the principles of deep learning models, and their unique capabilities for handling complex, high-dimensional datasets inherent in abiotic crop stress assessment. The review also highlights important challenges and future directions in deep learning based abiotic crop stress assessment like limited labelled data, model interpretability, and interoperability for robust stress phenotyping. This study critically examines the research pertaining to the abiotic crop stress assessment, and provides a comprehensive view of the role deep learning plays in advancing abiotic crop stress assessment for data-driven precision agriculture.

摘要

非生物胁迫是造成作物损失的主要原因,也是全球粮食安全面临的严重威胁。准确、及时地识别作物中的非生物胁迫对于有效的缓解策略至关重要。近年来,深度学习(DL)技术在利用遥感和田间数据进行高通量作物胁迫表型分析方面展现出了巨大的潜力。本研究全面综述了人工神经网络(ANN)、卷积神经网络(CNN)、循环神经网络(RNN)、视觉Transformer(ViT)等深度学习模型以及其他先进深度学习架构在利用物联网传感器数据、热成像、光谱、RGB图像以及基于田间、无人机和卫星的图像等不同模态进行非生物作物胁迫评估中的应用。该研究全面分析了由(a)水分(b)养分(c)盐分(d)温度和(e)重金属导致的非生物胁迫状况。详细讨论了文献中使用深度学习方法进行胁迫分类、定位和量化的关键贡献。该研究还涵盖了深度学习模型的原理,以及它们在处理非生物作物胁迫评估中固有的复杂高维数据集方面的独特能力。该综述还强调了基于深度学习的非生物作物胁迫评估中的重要挑战和未来方向,如标记数据有限、模型可解释性以及用于稳健胁迫表型分析的互操作性。本研究批判性地审视了与非生物作物胁迫评估相关的研究,并全面阐述了深度学习在推动数据驱动的精准农业中非生物作物胁迫评估方面所发挥的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验