Suppr超能文献

利用精准农业中的农业深度学习框架提高作物产量。

Improving crop production using an agro-deep learning framework in precision agriculture.

机构信息

Department of Computer Science, Christ University, Bengaluru, Karnataka, 560029, India.

Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

出版信息

BMC Bioinformatics. 2024 Nov 1;25(1):341. doi: 10.1186/s12859-024-05970-9.

Abstract

BACKGROUND

The study focuses on enhancing the effectiveness of precision agriculture through the application of deep learning technologies. Precision agriculture, which aims to optimize farming practices by monitoring and adjusting various factors influencing crop growth, can greatly benefit from artificial intelligence (AI) methods like deep learning. The Agro Deep Learning Framework (ADLF) was developed to tackle critical issues in crop cultivation by processing vast datasets. These datasets include variables such as soil moisture, temperature, and humidity, all of which are essential to understanding and predicting crop behavior. By leveraging deep learning models, the framework seeks to improve decision-making processes, detect potential crop problems early, and boost agricultural productivity.

RESULTS

The study found that the Agro Deep Learning Framework (ADLF) achieved an accuracy of 85.41%, precision of 84.87%, recall of 84.24%, and an F1-Score of 88.91%, indicating strong predictive capabilities for improving crop management. The false negative rate was 91.17% and the false positive rate was 89.82%, highlighting the framework's ability to correctly detect issues while minimizing errors. These results suggest that ADLF can significantly enhance decision-making in precision agriculture, leading to improved crop yield and reduced agricultural losses.

CONCLUSIONS

The ADLF can significantly improve precision agriculture by leveraging deep learning to process complex datasets and provide valuable insights into crop management. The framework allows farmers to detect issues early, optimize resource use, and improve yields. The study demonstrates that AI-driven agriculture has the potential to revolutionize farming, making it more efficient and sustainable. Future research could focus on further refining the model and exploring its applicability across different types of crops and farming environments.

摘要

背景

本研究通过应用深度学习技术,重点关注如何提高精准农业的效率。精准农业旨在通过监测和调整影响作物生长的各种因素来优化农业实践,人工智能(AI)方法,如深度学习,可以极大地受益于此。Agro Deep Learning Framework(ADLF)是为了解决作物种植中的关键问题而开发的,它通过处理大量数据集来实现这一目标。这些数据集包括土壤湿度、温度和湿度等变量,这些都是了解和预测作物行为的关键。通过利用深度学习模型,该框架旨在改善决策过程,及早发现潜在的作物问题,并提高农业生产力。

结果

研究发现,Agro Deep Learning Framework(ADLF)的准确率为 85.41%,精确率为 84.87%,召回率为 84.24%,F1 得分为 88.91%,这表明它具有很强的预测能力,可以改善作物管理。假阴性率为 91.17%,假阳性率为 89.82%,这表明该框架能够在最小化错误的同时正确地检测问题。这些结果表明,ADLF 可以通过利用深度学习处理复杂数据集,并为作物管理提供有价值的见解,从而显著提高精准农业的决策能力,进而提高作物产量并减少农业损失。

结论

ADLF 可以通过利用深度学习处理复杂数据集,并为作物管理提供有价值的见解,从而显著提高精准农业的决策能力,进而提高作物产量并减少农业损失。该框架可以帮助农民及早发现问题,优化资源利用,提高产量。该研究表明,人工智能驱动的农业具有改变农业的潜力,使农业更加高效和可持续。未来的研究可以集中进一步改进模型,并探索其在不同类型的作物和农业环境中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f1/11529011/986679f8fe64/12859_2024_5970_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验