Suppr超能文献

通信系统中手性(2 + 1)维非线性薛定谔方程新型光学孤子解的分岔分析与动力学行为

Bifurcation analysis and dynamical behavior of novel optical soliton solution of chiral (2 + 1) dimensional nonlinear Schrodinger equation in telecommunication system.

作者信息

Saber Hicham, Roshid Md Mamunur, Bouye Mohamed, Muhyi Abdulghani, Moumen Abdelkader, Aldwoah Khaled

机构信息

Department of Mathematics, College of Science, University of Hail, 55473, Hail, Saudi Arabia.

Department of Mathematics, Uttara University, Uttara, Bangladesh.

出版信息

Sci Rep. 2025 Apr 9;15(1):12160. doi: 10.1038/s41598-025-96337-4.

Abstract

This study explores in detail the bifurcation and optical solitons of the third-order nonlinear chiral (2 + 1)-dimensional nonlinear Schrödinger equation (M-fCNLSE) with the M-fractional derivative in nonlinear media. We also discuss the properties of fractional derivatives in this context. Initially, bifurcation theory is utilized to analyze critical points and phase portraits, identifying transitions that give rise to new dynamical behaviors, such as stability shifts or the onset of chaotic motion. The first figure depicts the dynamics of soliton solutions undergoing a saddle-node bifurcation. There are two techniques, namely the polynomial expansion (PE) and the unified solver (US) techniques, that are applied to explore wave propagation in telecommunication systems, nonlinear optics, plasma physics, and quantum mechanics. These methods enable the creation of new optical soliton solutions using hyperbolic, rational, and trigonometric functions. Numerical results, presented in 2D and 3D diagrams, demonstrate the behavior of the solutions. The polynomial expansion technique generates diverse periodic optical soliton solutions, including double-periodic and lump wave solitons. The unified solver technique produces periodic breather waves, double-periodic waves, and other complex wave structures. Additionally, two-dimensional graphs display the effects of the truncated M-fractional parameters for [Formula: see text]. Overall, this investigation and the proposed techniques provide valuable tools for generating precise optical soliton solutions, which have significant applications in optical communications, nonlinear optics, and engineering.

摘要

本研究详细探讨了非线性介质中具有M分数阶导数的三阶非线性手性(2 + 1)维非线性薛定谔方程(M-fCNLSE)的分岔和光学孤子。我们还讨论了在此背景下分数阶导数的性质。最初,利用分岔理论分析临界点和相图,识别导致新动力学行为的转变,如稳定性变化或混沌运动的开始。第一幅图描绘了经历鞍结分岔的孤子解的动力学。有两种技术,即多项式展开(PE)和统一求解器(US)技术,被应用于探索电信系统、非线性光学、等离子体物理和量子力学中的波传播。这些方法能够利用双曲函数、有理函数和三角函数创建新的光学孤子解。以二维和三维图表呈现的数值结果展示了解的行为。多项式展开技术生成了多种周期光学孤子解,包括双周期和块状波孤子。统一求解器技术产生周期呼吸波、双周期波和其他复杂波结构。此外,二维图展示了截断的M分数阶参数对[公式:见原文]的影响。总体而言,这项研究和所提出的技术为生成精确的光学孤子解提供了有价值的工具,这些解在光通信、非线性光学和工程领域有重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e24d/11982246/bbe9db05430c/41598_2025_96337_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验