Algolam Mohamed S, Roshid Md Mamunur, Alsharafi Mohammed, Younis Bakri, Aldwoah Khaled, Osman Osman
Department of Mathematics, College of Science, University of Ha'il, Ha'il, 55473, Saudi Arabia.
Department of Mathematics, Uttara University (UU), Uttara, Bangladesh.
Sci Rep. 2025 Apr 15;15(1):12929. doi: 10.1038/s41598-025-95687-3.
This research investigates the bifurcation theory of a generalized (3 + 1)-dimensional P-type nonlinear wave equation with an M-fractional derivative (M-fGP-NWE) and develops its soliton solutions. The model is initially transformed into an ordinary differential equation form using a wave variable. By employing a Galilean transformation, a dynamical system of equations is obtained. The phase portrait and Hamiltonian function are examined under different parametric conditions, facilitating the identification of homoclinic and heteroclinic orbits. These orbits illustrate solitary, bell-shaped, periodic wave solutions for certain parameter values. The modified simple equation (MSE) method is employed to derive soliton solutions for the M-fractional generalized (3 + 1)-dimensional P-type nonlinear wave equation. The resultant solutions are articulated in hyperbolic, trigonometric, and exponential forms under parametric circumstances. Complex wave phenomena are further exemplified through detailed 3D, 2D, and density graphs for certain parameter values. Additionally, we also analyse the modulation Instability of the proposed model. The computational results and visual depictions validate the efficiency and dependability of the MSE method, highlighting its efficacy as a flexible solution for complex fractional differential equations.
本研究探讨了具有M分数阶导数的广义(3 + 1)维P型非线性波动方程(M-fGP-NWE)的分岔理论,并推导了其孤子解。该模型首先利用一个波动变量转化为常微分方程形式。通过伽利略变换,得到了一个动力学方程组。在不同参数条件下研究了相图和哈密顿函数,便于识别同宿轨道和异宿轨道。这些轨道说明了某些参数值下的孤立波、钟形波、周期波解。采用修正的简单方程(MSE)方法推导了M分数阶广义(3 + 1)维P型非线性波动方程的孤子解。所得解在参数条件下以双曲、三角和指数形式表示。通过某些参数值的详细三维、二维和密度图进一步举例说明了复杂的波动现象。此外,我们还分析了所提出模型的调制不稳定性。计算结果和可视化描述验证了MSE方法的有效性和可靠性,突出了其作为复杂分数阶微分方程灵活解的功效。