Suppr超能文献

一种用于可持续农业的多作物生物胁迫分类与检测的轻量级深度学习模型。

A lightweight deep learning model for multi-plant biotic stress classification and detection for sustainable agriculture.

作者信息

Shafik Wasswa, Tufail Ali, De Silva Liyanage Chandratilak, Apong Rosyzie Anna Awg Haji Mohd

机构信息

School of Digital Science, Universiti Brunei Darussalam, Gadong, BE1410, Brunei.

Dig Connectivity Research Laboratory (DCRLab), P.O. Box. 600040, Kampala City, Uganda.

出版信息

Sci Rep. 2025 Apr 9;15(1):12195. doi: 10.1038/s41598-025-90487-1.

Abstract

Plant pathogens and pests hinder general plant health, resulting in poor agricultural yields and production. These threaten global food security and cause environmental and economic shortages. Amidst the available existing heavy deep learning (DL) models, there is an increasing demand for computation resources, memory constraints, delayed interface time, unscalable deployment, increased training time, higher data requirements, and inflexibility. To solve all these challenges, this study presents a robust and lightweight "AgarwoodNet" DL model. The research introduces and uses a new raw curated Agarwood pest and disease dataset (APDD) with 14 classes and 5,472 Agarwood leaf images from Brunei and the Turkey Plant Pests and Diseases (TPPD) dataset with 4,447 images categorized into 15 diverse classes of six plants. MATLAB deep learning toolbox was used to train the DL architectures. The performance assessment parameters considered Cohen's Kappa, specificity precision, F1 scores, and recall. The proposed AgarwoodNet achieved impressive Macro-average performance of 0.9666, 0.9714, and 0.9859 in Precision, Recall, and F1 Scores, respectively, and 0.9859 on Kappa when tested on APDD. More so, the model attained 95.85%, 96.13%, and 95.90% in testing using TPPD and 96.84% on Kappa with the model size of 37 megabytes, making it a lightweight model in relation to the pre-trained convolutional neural network a considerably heavy, others twice the proposed model. This model size is considerably light and can be implemented on low-memory devices, thus supporting sustainable agricultural applications that are precise and accurate in classifying and detecting plant diseases and diseases.

摘要

植物病原体和害虫会影响植物的整体健康,导致农业产量和生产不佳。这些威胁着全球粮食安全,并造成环境和经济短缺。在现有的深度深度学习(DL)模型中,对计算资源的需求不断增加,存在内存限制、接口时间延迟、不可扩展的部署、训练时间增加、数据要求更高以及灵活性不足等问题。为了解决所有这些挑战,本研究提出了一种强大且轻量级的“AgarwoodNet”DL模型。该研究引入并使用了一个新的经过整理的沉香病虫害数据集(APDD),它有14个类别和来自文莱的5472张沉香叶图像,以及土耳其植物病虫害(TPPD)数据集,其中有4447张图像被分类为六种植物的15个不同类别。使用MATLAB深度学习工具箱来训练DL架构。性能评估参数包括科恩卡帕系数、特异性精度、F1分数和召回率。所提出的AgarwoodNet在APDD上进行测试时,在精确率、召回率和F1分数方面分别取得了令人印象深刻的宏观平均性能0.9666、0.9714和0.9859,卡帕系数为0.9859。此外,在使用TPPD进行测试时,该模型的精确率、召回率和F1分数分别达到了95.85%、96.13%和95.90%,卡帕系数为96.84%,模型大小为37兆字节,与预训练的卷积神经网络相比,它是一个轻量级模型,预训练的卷积神经网络相当庞大,其他模型是所提出模型的两倍。这个模型大小相当轻,可以在低内存设备上实现,从而支持在植物病害分类和检测方面精确且准确的可持续农业应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed5/11982187/ce527631a10b/41598_2025_90487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验