Suppr超能文献

独居农村老年人抑郁风险预测模型的开发与验证

Development and validation of a depression risk prediction model for rural elderly living alone.

作者信息

Gao Shasha, Zhang Huijun

机构信息

School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning, P. R. China.

Department of Nursing, Jinzhou Medical University, No. 40, Section 3, Jinzhou City, Liaoning Province, P. R. China.

出版信息

BMC Psychiatry. 2025 Apr 9;25(1):357. doi: 10.1186/s12888-025-06785-5.

Abstract

BACKGROUND

Depression is a prevalent psychological issue among rural elderly individuals living alone, severely impacting their physical and mental health.

OBJECTIVE

To develop and validate a depression risk prediction model for rural elderly living alone based on the health ecological model, providing a scientific basis for early intervention.

METHODS

Using data from the 2011 China Health and Retirement Longitudinal Study (CHARLS), we included 1,221 participants. Thedataset was randomly stratified into a training set (70%) and a validation set (30%). Predictors were screened via univariate analysis, followed by multivariate logistic regression to construct the nomogram model. Statistical analysis was performed using R Studio 4.4.1.Ten-fold cross-validation was used to assess the model's stability. Model performance was evaluated using the Receiver Operating Characteristic (ROC) curve, with the Area Under the Curve (AUC) calculated, along with calibration plots, the Hosmer-Lemeshow test, and Decision Curve Analysis (DCA).

RESULTS

Self-rated health, pain, frailty, nighttime sleep duration, poor sleep quality, life satisfaction, and visit frequency were identified as independent predictors of depressive symptoms. The model demonstrated excellent discrimination (AUC = 0.85 [95% CI: 0.83-0.88] in the training set and 0.83 [95% CI: 0.78-0.87] in validation), good calibration (Hosmer-Lemeshow test p = 0.47), and high clinical utility (net benefit > 10% in DCA).

CONCLUSION

The nomogram provides a reliable and intuitive tool for early screening of depressive symptoms in rural elderly individuals living alone, supporting targeted interventions.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

抑郁症是农村独居老年人中普遍存在的心理问题,严重影响他们的身心健康。

目的

基于健康生态模型,开发并验证农村独居老年人抑郁症风险预测模型,为早期干预提供科学依据。

方法

使用2011年中国健康与养老追踪调查(CHARLS)的数据,纳入1221名参与者。将数据集随机分层为训练集(70%)和验证集(30%)。通过单因素分析筛选预测因素,随后进行多因素逻辑回归以构建列线图模型。使用R Studio 4.4.1进行统计分析。采用十折交叉验证评估模型的稳定性。使用受试者工作特征(ROC)曲线评估模型性能,计算曲线下面积(AUC),并绘制校准图、进行Hosmer-Lemeshow检验和决策曲线分析(DCA)。

结果

自评健康状况、疼痛、虚弱、夜间睡眠时间、睡眠质量差、生活满意度和就诊频率被确定为抑郁症状的独立预测因素。该模型显示出良好的区分度(训练集中AUC = 0.85 [95% CI:0.83 - 0.88],验证集中AUC = 0.83 [95% CI:0.78 - 0.87])、良好的校准度(Hosmer-Lemeshow检验p = 0.47)和较高的临床实用性(DCA中净效益> 10%)。

结论

列线图为农村独居老年人抑郁症状的早期筛查提供了可靠且直观的工具,支持针对性干预。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acaf/11983750/dd37fd14ed50/12888_2025_6785_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验