Ahmad Tahani M, Guida Alessandro, Stewart Sam, Barrett Noah, Vincer Michael J, Afifi Jehier K
Department of Pediatric Radiology, IWK Health, Halifax, Nova Scotia, Canada.
Department of Diagnostic Radiology, Dalhousie University, IWK Health, Nova Scotia, Canada.
Mayo Clin Proc Digit Health. 2024 Oct 9;2(4):596-605. doi: 10.1016/j.mcpdig.2024.09.003. eCollection 2024 Dec.
To develop deep learning (DL) models applied to neonatal cranial ultrasound (CUS) and clinical variables to predict neurodevelopmental impairment (NDI) in very preterm infants (VPIs) at 3 years of corrected age.
This is a retrospective study of a cohort of VPI (22-30 weeks' gestation) born between 2004 and 2016 in Nova Scotia, Canada. Clinical data at hospital discharge and CUS images at 3 time points were used to develop DL models using elastic net (EN) and convolutional neural network (CNN). The models' performances were compared using precision recall area under the curve (PR-AUC) and area under the receiver operation characteristic curve (ROC-AUC) with their 95% ci.
Of 665 eligible VPIs, 619 (93%) infants with 4184 CUS images were included. The CNN model combining CUS and clinical variables reported better performance (PR-AUC, 0.75; 95% CI, 072-0.79; ROC-AUC, 0.71; 95% CI, 0.67-0.74) in the prediction of positive NDI outcome compared with the traditional models based solely on clinical predictors (PR-AUC, 0.60; 95% CI, 0.52-0.68; ROC-AUC, 0.72; 95% CI, 0.68-0.75). When analyzed by the CUS plane and acquisition time point, the model using the anterior coronal plane at 6 weeks of age provided the highest predictive accuracy (PR-AUC, 0.81; 95% CI, 0.77-0.91; ROC-AUC, 0.78; 95% CI, 0.66-0.87).
We developed and internally validated a DL prognostic model using CUS and clinical predictors to predict NDI in VPIs at 3 years of age. Early and accurate identification of infants at risk for NDI enables referral to targeted interventions, which improves functional outcomes.
开发应用于新生儿颅脑超声(CUS)和临床变量的深度学习(DL)模型,以预测极早产儿(VPI)在矫正年龄3岁时的神经发育障碍(NDI)。
这是一项对2004年至2016年在加拿大新斯科舍省出生的一组VPI(妊娠22 - 30周)的回顾性研究。利用出院时的临床数据和3个时间点的CUS图像,采用弹性网络(EN)和卷积神经网络(CNN)开发DL模型。使用精确召回率曲线下面积(PR - AUC)和受试者操作特征曲线下面积(ROC - AUC)及其95%置信区间比较模型性能。
在665名符合条件的VPI中,纳入了619名(93%)婴儿的4184张CUS图像。与仅基于临床预测指标的传统模型相比,结合CUS和临床变量的CNN模型在预测NDI阳性结果方面表现更好(PR - AUC,0.75;95%置信区间,0.72 - 0.79;ROC - AUC,0.71;95%置信区间,0.67 - 0.74)。按CUS平面和采集时间点分析时,使用6周龄时前冠状平面的模型预测准确性最高(PR - AUC,0.81;95%置信区间,0.77 - 0.91;ROC - AUC,0.78;95%置信区间,0.66 - 0.87)。
我们开发并内部验证了一种使用CUS和临床预测指标的DL预后模型,用于预测3岁VPI的NDI。早期准确识别有NDI风险的婴儿可使其获得针对性干预,从而改善功能结局。