Division of Neonatology, Department of Pediatrics, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
BMC Med. 2024 Feb 16;22(1):68. doi: 10.1186/s12916-024-03286-2.
Follow-up visits for very preterm infants (VPI) after hospital discharge is crucial for their neurodevelopmental trajectories, but ensuring their attendance before 12 months corrected age (CA) remains a challenge. Current prediction models focus on future outcomes at discharge, but post-discharge data may enhance predictions of neurodevelopmental trajectories due to brain plasticity. Few studies in this field have utilized machine learning models to achieve this potential benefit with transparency, explainability, and transportability.
We developed four prediction models for cognitive or motor function at 24 months CA separately at each follow-up visits, two for the 6-month and two for the 12-month CA visits, using hospitalized and follow-up data of VPI from the Taiwan Premature Infant Follow-up Network from 2010 to 2017. Regression models were employed at 6 months CA, defined as a decline in The Bayley Scales of Infant Development 3rd edition (BSIDIII) composite score > 1 SD between 6- and 24-month CA. The delay models were developed at 12 months CA, defined as a BSIDIII composite score < 85 at 24 months CA. We used an evolutionary-derived machine learning method (EL-NDI) to develop models and compared them to those built by lasso regression, random forest, and support vector machine.
One thousand two hundred forty-four VPI were in the developmental set and the two validation cohorts had 763 and 1347 VPI, respectively. EL-NDI used only 4-10 variables, while the others required 29 or more variables to achieve similar performance. For models at 6 months CA, the area under the receiver operating curve (AUC) of EL-NDI were 0.76-0.81(95% CI, 0.73-0.83) for cognitive regress with 4 variables and 0.79-0.83 (95% CI, 0.76-0.86) for motor regress with 4 variables. For models at 12 months CA, the AUC of EL-NDI were 0.75-0.78 (95% CI, 0.72-0.82) for cognitive delay with 10 variables and 0.73-0.82 (95% CI, 0.72-0.85) for motor delay with 4 variables.
Our EL-NDI demonstrated good performance using simpler, transparent, explainable models for clinical purpose. Implementing these models for VPI during follow-up visits may facilitate more informed discussions between parents and physicians and identify high-risk infants more effectively for early intervention.
早产儿出院后的随访对于其神经发育轨迹至关重要,但确保他们在 12 个月矫正年龄(CA)之前就诊仍然是一个挑战。目前的预测模型侧重于出院时的未来结果,但由于大脑的可塑性,出院后的数据可能会增强对神经发育轨迹的预测。在这一领域,很少有研究利用机器学习模型实现这一潜在益处,同时保持透明度、可解释性和可转移性。
我们分别在每个随访时间点开发了四个用于认知或运动功能的预测模型,分别用于 6 个月和 12 个月 CA 的随访,使用了 2010 年至 2017 年来自台湾早产儿随访网络的住院和随访数据。在 6 个月 CA 时使用回归模型,定义为 6-24 个月 CA 之间贝利婴幼儿发展量表第三版(BSIDIII)综合评分下降>1 SD。延迟模型在 12 个月 CA 时建立,定义为 24 个月 CA 时 BSIDIII 综合评分<85。我们使用一种进化衍生的机器学习方法(EL-NDI)来开发模型,并将其与lasso 回归、随机森林和支持向量机建立的模型进行比较。
1244 名 VPI 纳入发育组,两个验证队列分别有 763 名和 1347 名 VPI。EL-NDI 仅使用 4-10 个变量,而其他方法则需要 29 个或更多变量才能达到类似的性能。对于 6 个月 CA 的模型,EL-NDI 的接收者操作特征曲线(AUC)为认知回归 4 变量时为 0.76-0.81(95%CI,0.73-0.83),运动回归 4 变量时为 0.79-0.83(95%CI,0.76-0.86)。对于 12 个月 CA 的模型,EL-NDI 的 AUC 为认知延迟 10 变量时为 0.75-0.78(95%CI,0.72-0.82),运动延迟 4 变量时为 0.73-0.82(95%CI,0.72-0.85)。
我们的 EL-NDI 展示了使用更简单、透明、可解释的模型用于临床目的的良好性能。在随访期间为 VPI 实施这些模型可以促进父母和医生之间更有针对性的讨论,并更有效地识别高风险婴儿,以便进行早期干预。