Miao Junjie, Xu Yuan, Men Kuo, Dai Jianrong
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Front Oncol. 2025 Mar 26;15:1509449. doi: 10.3389/fonc.2025.1509449. eCollection 2025.
This study introduces a deep learning (DL) model that leverages doses calculated from both a treatment planning system (TPS) and independent dose verification software using Monte Carlo (MC) simulations, aiming to predict the gamma passing rate (GPR) in VMAT patient-specific QA more accurately.
We utilized data from 710 clinical VMAT plans measured with an ArcCHECK phantom. These plans were recalculated on an ArcCHECK phantom image using Pinnacle TPS and MC algorithms, and the planar dose distributions corresponding to the detector element surfaces were utilized as input for the DL model. A convolutional neural network (CNN) comprising four layers was employed for model training. The model's performance was evaluated through multiple predictive error metrics and receiver operator characteristic (ROC) curves for various gamma criteria.
The mean absolute errors (MAE) between measured GPR and predicted GPR are 1.1%, 1.9%, 1.7%, and 2.6% for the 3%/3mm, 3%/2mm, 2%/3mm, and 2%/2mm gamma criteria, respectively. The correlation coefficients between predicted GPR and measured GPR are 0.69, 0.72, 0.68, and 0.71 for each gamma criterion. The AUC (Area Under the Curve) values based on ROC curve for the four gamma criteria are 0.90, 0.92, 0.93, and 0.89, indicating high classification performance.
This DL-based approach showcases significant potential in enhancing the efficiency and accuracy of VMAT patient-specific QA. This approach promises to be a useful tool for reducing the workload of patient-specific quality assurance.
本研究引入一种深度学习(DL)模型,该模型利用从治疗计划系统(TPS)计算出的剂量以及使用蒙特卡罗(MC)模拟的独立剂量验证软件,旨在更准确地预测容积调强放疗(VMAT)患者特定质量保证中的伽马通过率(GPR)。
我们使用了通过ArcCHECK模体测量的710个临床VMAT计划的数据。这些计划在ArcCHECK模体图像上使用Pinnacle TPS和MC算法重新计算,并且与探测器元件表面相对应的平面剂量分布被用作DL模型的输入。采用一个由四层组成的卷积神经网络(CNN)进行模型训练。通过多种预测误差指标和针对各种伽马标准的接收者操作特征(ROC)曲线来评估模型的性能。
对于3%/3mm、3%/2mm、2%/3mm和2%/2mm伽马标准,测量的GPR与预测的GPR之间的平均绝对误差(MAE)分别为1.1%、1.9%、1.7%和2.6%。对于每个伽马标准,预测的GPR与测量的GPR之间的相关系数分别为0.69、0.72、0.68和0.71。基于四个伽马标准的ROC曲线的曲线下面积(AUC)值分别为0.90、0.92、0.93和0.89,表明具有较高的分类性能。
这种基于DL的方法在提高VMAT患者特定质量保证的效率和准确性方面展现出巨大潜力。这种方法有望成为减少患者特定质量保证工作量的有用工具。