Suppr超能文献

基于影像的神经架构搜索提高调强放疗 QA 预测

Improvement of IMRT QA prediction using imaging-based neural architecture search.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA.

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

出版信息

Med Phys. 2022 Aug;49(8):5236-5243. doi: 10.1002/mp.15694. Epub 2022 May 15.

Abstract

PURPOSE

Machine learning (ML) has been used to predict the gamma passing rate (GPR) of intensity-modulated radiation therapy (IMRT) QA results. In this work, we applied a novel neural architecture search to automatically tune and search for the best deep neural networks instead of using hand-designed deep learning architectures.

METHOD AND MATERIALS

One hundred and eighty-two IMRT plans were created and delivered with portal dosimetry. A total of 1497 fields for multiple treatment sites were delivered and measured by portal imagers. Gamma criteria of 2%/2 mm with a 5% threshold were used. Fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). Auto-Keras was implemented to search for the best CNN architecture for fluence image regression. The network morphism was adopted in the searching process, in which the base models were ResNet and DenseNet. The performance of this CNN approach was compared with tree-based ML models previously developed for this application, using the same dataset.

RESULTS

The deep-learning-based approach had 98.3% of predictions within 3% of the measured 2%/2-mm GPRs with a maximum error of 3.1% and a mean absolute error of less than 1%. Our results show that this novel architecture search approach achieves comparable performance to the machine-learning-based approaches with handcrafted features.

CONCLUSIONS

We implemented a novel CNN model using imaging-based neural architecture for IMRT QA prediction. The imaging-based deep-learning method does not require a manual extraction of relevant features and is able to automatically select the best network architecture.

摘要

目的

机器学习(ML)已被用于预测调强放射治疗(IMRT)QA 结果的伽马通过率(GPR)。在这项工作中,我们应用了一种新的神经架构搜索方法,自动调整和搜索最佳的深度神经网络,而不是使用手工设计的深度学习架构。

方法和材料

创建并通过门控剂量学交付了 182 个 IMRT 计划。共交付和测量了来自多个治疗部位的 1497 个场,使用门控成像仪进行测量。使用 2%/2mm 的伽马标准和 5%的阈值。为每个计划计算的通量图被用作卷积神经网络(CNN)的输入。自动 Keras 用于搜索通量图像回归的最佳 CNN 架构。在搜索过程中采用了网络形态学,其中基础模型为 ResNet 和 DenseNet。使用相同的数据集,将此 CNN 方法的性能与先前为此应用开发的基于树的 ML 模型进行比较。

结果

基于深度学习的方法有 98.3%的预测值在测量的 2%/2-mm GPR 的 3%以内,最大误差为 3.1%,平均绝对误差小于 1%。我们的结果表明,这种新的架构搜索方法与基于手工特征的机器学习方法具有相当的性能。

结论

我们使用基于成像的神经架构实现了一种新的用于 IMRT QA 预测的 CNN 模型。基于成像的深度学习方法不需要手动提取相关特征,并且能够自动选择最佳的网络架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验