Suppr超能文献

优化心脏模型训练和推理的输入选择:一种基于高效三维卷积神经网络的冠状动脉造影视频自动选择方法。

Optimizing Input Selection for Cardiac Model Training and Inference: An Efficient 3D Convolutional Neural Networks-Based Approach to Automate Coronary Angiogram Video Selection.

作者信息

Chang Shih-Sheng, Rostami Behrouz, LoRusso Gerardo, Liu Chia-Hao, Alkhouli Mohamad

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.

Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.

出版信息

Mayo Clin Proc Digit Health. 2025 Jan 21;3(1):100195. doi: 10.1016/j.mcpdig.2025.100195. eCollection 2025 Mar.

Abstract

OBJECTIVE

To develop an efficient and automated method for selecting appropriate coronary angiography videos for training deep learning models, thereby improving the accuracy and efficiency of medical image analysis.

PATIENTS AND METHODS

We developed deep learning models using 232 coronary angiographic studies from the Mayo Clinic. We utilized 2 state-of-the-art convolutional neural networks (CNN: ResNet and X3D) to identify low-quality angiograms through binary classification (satisfactory/unsatisfactory). Ground truth for the quality of the input angiogram was determined by 2 experienced cardiologists. We validated the developed model in an independent dataset of 3208 procedures from 3 Mayo sites.

RESULTS

The 3D-CNN models outperformed their 2D counterparts, with the X3D-L model achieving superior performance across all metrics (AUC 0.98, accuracy 0.96, precision 0.87, and F1 score 0.92). Compared with 3D models, 2D architectures are smaller and less computationally complex. Despite having a 3D architecture, the X3D-L model had lower computational demand (19.34 Giga Multiply Accumulate Operation) and parameter count (5.34 M) than 2D models. When validating models on the independent dataset, slight decreases in all metrics were observed, but AUC and accuracy remained robust (0.95 and 0.92, respectively, for the X3D-L model).

CONCLUSION

We developed a rapid and effective method for automating the selection of coronary angiogram video clips using 3D-CNNs, potentially improving model accuracy and efficiency in clinical applications. The X3D-L model reports a balanced trade-off between computational efficiency and complexity, making it suitable for real-life clinical applications.

摘要

目的

开发一种高效的自动化方法,用于选择合适的冠状动脉造影视频以训练深度学习模型,从而提高医学图像分析的准确性和效率。

患者与方法

我们使用梅奥诊所的232项冠状动脉造影研究开发了深度学习模型。我们利用2种先进的卷积神经网络(CNN:ResNet和X3D)通过二元分类(满意/不满意)来识别低质量血管造影。输入血管造影质量的真实情况由2位经验丰富的心脏病专家确定。我们在来自梅奥3个站点的3208例手术的独立数据集中验证了所开发的模型。

结果

3D-CNN模型优于其2D对应模型,X3D-L模型在所有指标上均表现出色(AUC为0.98,准确率为0.96,精确率为0.87,F1分数为0.92)。与3D模型相比,2D架构更小且计算复杂度更低。尽管具有3D架构,但X3D-L模型的计算需求(19.34千兆乘法累加运算)和参数数量(534万)比2D模型更低。在独立数据集上验证模型时,所有指标均略有下降,但AUC和准确率仍然稳健(X3D-L模型分别为0.95和0.92)。

结论

我们开发了一种使用3D-CNN自动选择冠状动脉造影视频片段的快速有效方法,可能会提高临床应用中模型的准确性和效率。X3D-L模型在计算效率和复杂度之间实现了平衡,使其适用于实际临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af7f/11975815/63aec96f0472/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验