Suppr超能文献

使用深度卷积神经网络对传统MRI图像进行自动脑胶质瘤分级

Automated glioma grading on conventional MRI images using deep convolutional neural networks.

作者信息

Zhuge Ying, Ning Holly, Mathen Peter, Cheng Jason Y, Krauze Andra V, Camphausen Kevin, Miller Robert W

机构信息

Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer, Vancouver, BC, Canada.

出版信息

Med Phys. 2020 Jul;47(7):3044-3053. doi: 10.1002/mp.14168. Epub 2020 May 11.

Abstract

PURPOSE

Gliomas are the most common primary tumor of the brain and are classified into grades I-IV of the World Health Organization (WHO), based on their invasively histological appearance. Gliomas grading plays an important role to determine the treatment plan and prognosis prediction. In this study we propose two novel methods for automatic, non-invasively distinguishing low-grade (Grades II and III) glioma (LGG) and high-grade (grade IV) glioma (HGG) on conventional MRI images by using deep convolutional neural networks (CNNs).

METHODS

All MRI images have been preprocessed first by rigid image registration and intensity inhomogeneity correction. Both proposed methods consist of two steps: (a) three-dimensional (3D) brain tumor segmentation based on a modification of the popular U-Net model; (b) tumor classification on segmented brain tumor. In the first method, the slice with largest area of tumor is determined and the state-of-the-art mask R-CNN model is employed for tumor grading. To improve the performance of the grading model, a two-dimensional (2D) data augmentation has been implemented to increase both the amount and the diversity of the training images. In the second method, denoted as 3DConvNet, a 3D volumetric CNNs is applied directly on bounding image regions of segmented tumor for classification, which can fully leverage the 3D spatial contextual information of volumetric image data.

RESULTS

The proposed schemes were evaluated on The Cancer Imaging Archive (TCIA) low grade glioma (LGG) data, and the Multimodal Brain Tumor Image Segmentation (BraTS) Benchmark 2018 training datasets with fivefold cross validation. All data are divided into training, validation, and test sets. Based on biopsy-proven ground truth, the performance metrics of sensitivity, specificity, and accuracy are measured on the test sets. The results are 0.935 (sensitivity), 0.972 (specificity), and 0.963 (accuracy) for the 2D Mask R-CNN based method, and 0.947 (sensitivity), 0.968 (specificity), and 0.971 (accuracy) for the 3DConvNet method, respectively. In regard to efficiency, for 3D brain tumor segmentation, the program takes around ten and a half hours for training with 300 epochs on BraTS 2018 dataset and takes only around 50 s for testing of a typical image with a size of 160 × 216 × 176. For 2D Mask R-CNN based tumor grading, the program takes around 4 h for training with around 60 000 iterations, and around 1 s for testing of a 2D slice image with size of 128 × 128. For 3DConvNet based tumor grading, the program takes around 2 h for training with 10 000 iterations, and 0.25 s for testing of a 3D cropped image with size of 64 × 64 × 64, using a DELL PRECISION Tower T7910, with two NVIDIA Titan Xp GPUs.

CONCLUSIONS

Two effective glioma grading methods on conventional MRI images using deep convolutional neural networks have been developed. Our methods are fully automated without manual specification of region-of-interests and selection of slices for model training, which are common in traditional machine learning based brain tumor grading methods. This methodology may play a crucial role in selecting effective treatment options and survival predictions without the need for surgical biopsy.

摘要

目的

胶质瘤是最常见的原发性脑肿瘤,根据其侵袭性组织学表现被分为世界卫生组织(WHO)的I-IV级。胶质瘤分级在确定治疗方案和预测预后方面起着重要作用。在本研究中,我们提出了两种新颖的方法,通过使用深度卷积神经网络(CNN)在传统MRI图像上自动、非侵入性地区分低级别(II级和III级)胶质瘤(LGG)和高级别(IV级)胶质瘤(HGG)。

方法

所有MRI图像首先通过刚性图像配准和强度不均匀性校正进行预处理。两种方法都包括两个步骤:(a)基于对流行的U-Net模型的修改进行三维(3D)脑肿瘤分割;(b)对分割后的脑肿瘤进行分类。在第一种方法中,确定肿瘤面积最大的切片,并采用最先进的Mask R-CNN模型进行肿瘤分级。为了提高分级模型的性能,实施了二维(2D)数据增强以增加训练图像的数量和多样性。在第二种方法中,记为3DConvNet,将三维体积CNN直接应用于分割肿瘤的边界图像区域进行分类,这可以充分利用体积图像数据的3D空间上下文信息。

结果

所提出的方案在癌症影像存档(TCIA)低级别胶质瘤(LGG)数据以及多模态脑肿瘤图像分割(BraTS)2018基准训练数据集上进行了五折交叉验证评估。所有数据都被分为训练集、验证集和测试集。基于活检证实的真实情况,在测试集上测量敏感性、特异性和准确性等性能指标。基于二维Mask R-CNN的方法的结果分别为0.935(敏感性)、0.972(特异性)和0.963(准确性),基于3DConvNet方法的结果分别为0.947(敏感性)、0.968(特异性)和0.971(准确性)。在效率方面,对于3D脑肿瘤分割,在BraTS 2018数据集上使用300个轮次进行训练时,程序大约需要十个半小时,对于大小为160×216×176的典型图像进行测试时仅需约50秒。对于基于二维Mask R-CNN的肿瘤分级,使用约60000次迭代进行训练时程序大约需要4小时,对于大小为128×128的二维切片图像进行测试时约需1秒。对于基于3DConvNet的肿瘤分级,使用10000次迭代进行训练时程序大约需要2小时,对于大小为64×64×64的三维裁剪图像进行测试时需0.25秒,使用的是配备两块NVIDIA Titan Xp GPU的DELL PRECISION Tower T7910。

结论

已经开发出两种使用深度卷积神经网络在传统MRI图像上进行有效胶质瘤分级的方法。我们的方法是完全自动化的,无需手动指定感兴趣区域和选择用于模型训练的切片区域,而这在基于传统机器学习的脑肿瘤分级方法中很常见。这种方法在无需手术活检的情况下选择有效的治疗方案和生存预测方面可能起着至关重要的作用。

相似文献

引用本文的文献

10
Brain tumor grade classification using the ConvNext architecture.使用ConvNext架构进行脑肿瘤分级分类。
Digit Health. 2024 Sep 28;10:20552076241284920. doi: 10.1177/20552076241284920. eCollection 2024 Jan-Dec.

本文引用的文献

5
NiftyNet: a deep-learning platform for medical imaging.NiftyNet:一个用于医学成像的深度学习平台。
Comput Methods Programs Biomed. 2018 May;158:113-122. doi: 10.1016/j.cmpb.2018.01.025. Epub 2018 Jan 31.
10
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.基于 MRI 图像的卷积神经网络脑肿瘤分割。
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验