Suppr超能文献

预测下肢运动学中的步态速度和任务特异性:一种使用惯性传感器的深度学习方法

Gait Speed and Task Specificity in Predicting Lower-Limb Kinematics: A Deep Learning Approach Using Inertial Sensors.

作者信息

Shah Vaibhav R, Dixon Philippe C

机构信息

Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Montreal, Canada.

Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, Canada.

出版信息

Mayo Clin Proc Digit Health. 2024 Nov 27;3(1):100183. doi: 10.1016/j.mcpdig.2024.11.004. eCollection 2025 Mar.

Abstract

OBJECTIVE

To develop a deep learning framework to predict lower-limb joint kinematics from inertial measurement unit (IMU) data across multiple gait tasks (walking, jogging, and running) and evaluate the impact of dynamic time warping (DTW) on reducing prediction errors.

PATIENTS AND METHODS

Data were collected from 18 participants fitted with IMUs and an optical motion capture system between May 25, 2023, and May 30, 2023. A long short-term memory autoencoder supervised regression model was developed. The model consisted of multiple long short-term memory and convolution layers. Acceleration and gyroscope data from the IMUs in 3 axes and their magnitude for the proximal and distal sensors of each joint (hip, knee, and ankle) were inputs to the model. Optical motion capture kinematics were considered ground truth and used as an output to train the prediction model.

RESULTS

The deep learning models achieved a root-mean-square error of less than 6° for hip, knee, and ankle joint sagittal plane angles, with the ankle showing the lowest error (5.1°). Task-specific models reported enhanced performance during certain gait phases, such as knee flexion during running. The application of DTW significantly reduced root-mean-square error across all tasks by at least 3° to 4°. External validation of independent data confirmed the model's generalizability.

CONCLUSION

Our findings underscore the potential of IMU-based deep learning models for joint kinematic predictions, offering a practical solution for remote and continuous biomechanical assessments in health care and sports science.

摘要

目的

开发一种深度学习框架,用于根据惯性测量单元(IMU)数据预测多个步态任务(步行、慢跑和跑步)中的下肢关节运动学,并评估动态时间规整(DTW)对减少预测误差的影响。

患者与方法

于2023年5月25日至2023年5月30日期间,从18名佩戴IMU和光学运动捕捉系统的参与者身上收集数据。开发了一种长短期记忆自动编码器监督回归模型。该模型由多个长短期记忆层和卷积层组成。每个关节(髋、膝和踝)近端和远端传感器的IMU在3个轴上的加速度和陀螺仪数据及其幅值作为模型的输入。光学运动捕捉运动学被视为地面真值,并用作训练预测模型的输出。

结果

深度学习模型在髋、膝和踝关节矢状面角度上实现了均方根误差小于6°,其中踝关节误差最低(5.1°)。特定任务模型在某些步态阶段表现出增强的性能,如跑步时的膝关节屈曲。DTW的应用在所有任务中显著降低了均方根误差至少3°至4°。独立数据的外部验证证实了该模型的通用性。

结论

我们的研究结果强调了基于IMU的深度学习模型在关节运动学预测方面的潜力,为医疗保健和运动科学中的远程和连续生物力学评估提供了一种实用的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b35d/11975825/48405d8615d2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验