Brinson Alison K, Jahnke Hannah R, Rubin-Miller Lily, Henrich Natalie, Challa Bhavna, Moss Christa, Shah Neel, Peahl Alex
Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Mayo Clin Proc Digit Health. 2023 Feb 10;1(1):13-24. doi: 10.1016/j.mcpdig.2022.12.001. eCollection 2023 Mar.
OBJECTIVE: To identify trajectories of prenatal digital service utilization across pregnancy and examine their associations with pregnancy outcomes. PATIENTS AND METHODS: Data were extracted from 5409 pregnant people enrolled in Maven, a comprehensive digital platform for women's and family health, between January 1, 2020, and May 27, 2022. Multitrajectory modeling used digital service utilization data (eg, articles read, classes attended, and appointments with providers) at each trimester to identify trajectories of digital use across pregnancy. Multinomial logistic regression models tested for associations between the utilization trajectories and user-reported pregnancy education, experiences, and outcomes. RESULTS: Four distinct trajectories of digital service utilization were identified and labeled as follows: (1) baseline users (52% of users), (2) just-in-timers (16%), (3) learners (26%), and (4) super users (6%). Users varied across trajectories by race, perinatal support interests, mental health, and parity. Compared with baseline users, trajectories reflective of more digital health service utilization were all positively associated with self-reported influence of Maven on pregnancy education, maternity care experience, and clinical outcomes. CONCLUSION: Distinct trajectories of digital health utilization emerged among pregnant individuals with differences in user characteristics and medical risks by trajectory group. Users in higher-use trajectories reported greater benefits from digital health. These findings may be used to inform gaps in existing prenatal care and help provide tailored services to reflect the unique needs of each individual pregnancy.
目的:确定孕期数字服务使用的轨迹,并研究其与妊娠结局的关联。 患者与方法:数据来自2020年1月1日至2022年5月27日期间纳入Maven(一个女性及家庭健康综合数字平台)的5409名孕妇。多轨迹建模使用各孕期的数字服务使用数据(如阅读的文章、参加的课程以及与医疗服务提供者的预约)来确定孕期数字使用轨迹。多项逻辑回归模型测试了使用轨迹与用户报告的妊娠教育、经历和结局之间的关联。 结果:确定了四种不同的数字服务使用轨迹,并分别标记为:(1) 基线用户(占用户的52%),(2) 即时使用者(16%),(3) 学习者(26%),以及(4) 超级用户(6%)。不同轨迹的用户在种族、围产期支持兴趣、心理健康和产次方面存在差异。与基线用户相比,反映更多数字健康服务使用的轨迹均与自我报告的Maven对妊娠教育、产科护理经历和临床结局的影响呈正相关。 结论:在孕妇中出现了不同的数字健康使用轨迹,轨迹组在用户特征和医疗风险方面存在差异。高使用轨迹的用户报告称从数字健康中获得了更大益处。这些发现可用于了解现有产前护理中的差距,并有助于提供量身定制的服务,以反映每个孕期的独特需求。
Mayo Clin Proc Digit Health. 2023-2-10
Obstet Gynecol. 2024-2-1
Psychiatr Res Clin Pract. 2023-11-29
Digit Health. 2024-9-2
J Midwifery Womens Health. 2023-3
PLoS One. 2022
Health Qual Life Outcomes. 2021-7-21
Am J Obstet Gynecol. 2020-7-17
Obstet Gynecol. 2020-5