Suppr超能文献

识别有助于改进现有基于分解的PMI估计方法的因素。

Identifying factors that help improve existing decomposition-based PMI estimation methods.

作者信息

Nau Anna-Maria, Ditto Phillip, Steadman Dawnie Wolfe, Mockus Audris

机构信息

Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee, USA.

The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, Tennessee, USA.

出版信息

J Forensic Sci. 2025 Jul;70(4):1249-1260. doi: 10.1111/1556-4029.70046. Epub 2025 Apr 10.

Abstract

Accurately assessing the postmortem interval (PMI) remains a challenging task in forensic science. Existing regression models use the decomposition score to predict the PMI or accumulated degree days (ADD) but are often imprecise and rely on small sample sizes. This study explores if we can construct more accurate outdoor PMI estimation models using (a) a larger sample, (b) more sophisticated statistical models, and (c) additional predictors derived from demographic and environmental factors. Using a sample of 213 human subjects from a human decomposition photographic dataset collected at the [removed for double-blind review], we evaluated existing outdoor PMI and ADD formulae developed by Gelderman et al. [Int J Legal Med, 2018, 132, 863] and also developed more sophisticated models that incorporate additional predictors. Models using the total decomposition score (TDS), demographic factors (age, sex, and BMI), and weather-related factors (season and humidity history) reduced PMI and ADD prediction errors by over 50%. The best PMI model, incorporating TDS, demographic, and weather predictors, achieved an adjusted R-squared of 0.42 and an RMSE of 0.76. It had a 15% lower RMSE than the TDS-only model to predict PMI and a 54% lower RMSE than the pre-existing PMI formula. Similarly, the best ADD model, using the same predictors, achieved an adjusted R-squared of 0.54 and an RMSE of 0.73. It had a 10% lower RMSE than the TDS-only model to predict the ADD and a 55% lower RMSE than the pre-existing ADD formula. These results demonstrate that significant improvements in accuracy can be achieved using readily available predictors.

摘要

在法医学中,准确评估死后间隔时间(PMI)仍然是一项具有挑战性的任务。现有的回归模型使用分解评分来预测PMI或累积度日数(ADD),但往往不够精确,且依赖于小样本量。本研究探讨是否可以通过(a)更大的样本、(b)更复杂的统计模型以及(c)从人口统计学和环境因素中得出的额外预测变量来构建更准确的户外PMI估计模型。我们使用了从[因双盲评审而删除]收集的人类分解摄影数据集中选取的213名人类受试者样本,评估了Gelderman等人[《国际法医学杂志》,2018年,132卷,863页]开发的现有户外PMI和ADD公式,并还开发了纳入额外预测变量的更复杂模型。使用总分解评分(TDS)、人口统计学因素(年龄、性别和BMI)以及与天气相关的因素(季节和湿度历史)的模型将PMI和ADD预测误差降低了50%以上。最佳的PMI模型,纳入了TDS、人口统计学和天气预测变量,调整后的R平方为0.42,均方根误差(RMSE)为0.76。在预测PMI时,其RMSE比仅使用TDS的模型低15%,比现有的PMI公式低54%。同样,使用相同预测变量的最佳ADD模型,调整后的R平方为0.54,RMSE为0.73。在预测ADD时,其RMSE比仅使用TDS的模型低10%,比现有的ADD公式低55%。这些结果表明,使用现成的预测变量可以显著提高准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验