Phillips Andrew L, Huttly Alison K, Alarcón-Reverte Rocío, Clark Suzanne J, Jaworek Pavel, Tarkowská Danuše, Sokolowska Patrycja, Steele David, Riche Andrew, Hawkesford Malcolm J, Thomas Stephen G, Hedden Peter, Pearce Stephen
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacký University Olomouc, Šlechtitelů 27, CZ-77900 Olomouc, Czech Republic.
J Exp Bot. 2025 Aug 21;76(12):3345-3358. doi: 10.1093/jxb/eraf151.
Plant gibberellin (GA) concentrations are tightly regulated to optimize growth and development. GA 3-oxidases (GA3OX) catalyse a key GA biosynthesis step, converting precursor GAs into bioactive forms. We characterized seven GA3OX homologues in bread wheat (Triticum aestivum L.): a homoeologous triad of GA3OX2 genes expressed in vegetative and reproductive tissues, and four others (a homoeologous triad of GA3OX3 genes plus GA1OX1-B1) expressed predominantly in grains. ga3ox2 mutants are severely dwarfed and infertile due to very low bioactive GA concentrations, indicating that GA3OX2 is essential for normal wheat development. By contrast, ga3ox3 mutants have lower bioactive GA concentrations in grains, reducing grain size and weight, whereas ga1ox1 mutants accumulate high concentrations of bioactive GAs, producing larger grains. Unexpectedly, ga3ox3 and ga1ox1 alleles also affected height, possibly reflecting GA transport to vegetative tissues. Natural variation in adjacent GA3OX3-B1 and GA1OX1-B1 genes was associated with differences in grain size and weight, suggesting that a haplotype associated with larger grains was selected during modern breeding. Our study shows that the wheat GA3OX family has diversified roles, with GA3OX2 required for general growth and GA3OX3/GA1OX1 modulating GA concentrations during grain development. These findings highlight opportunities to exploit variation in GA biosynthetic pathways for wheat improvement.
植物赤霉素(GA)的浓度受到严格调控,以优化生长和发育。GA 3-氧化酶(GA3OX)催化GA生物合成的关键步骤,将前体GA转化为生物活性形式。我们鉴定了普通小麦(Triticum aestivum L.)中的7个GA3OX同源基因:一组在营养组织和生殖组织中表达的GA3OX2基因同源三联体,以及另外4个(一组GA3OX3基因同源三联体加上GA1OX1-B1)主要在籽粒中表达的基因。ga3ox2突变体由于生物活性GA浓度极低而严重矮化且不育,这表明GA3OX2对小麦的正常发育至关重要。相比之下,ga3ox3突变体籽粒中的生物活性GA浓度较低,导致籽粒大小和重量减小,而ga1ox1突变体积累高浓度的生物活性GA,产生更大的籽粒。出乎意料的是,ga3ox3和ga1ox1等位基因也影响株高,这可能反映了GA向营养组织的运输。相邻的GA3OX3-B1和GA1OX1-B1基因的自然变异与籽粒大小和重量的差异相关,这表明在现代育种过程中选择了与更大籽粒相关的单倍型。我们的研究表明,小麦GA3OX家族具有多种作用,GA3OX2是一般生长所必需的,而GA3OX3/GA1OX1在籽粒发育过程中调节GA浓度。这些发现突出了利用GA生物合成途径变异来改良小麦的机会。