Kala Abhinav, Sharp David, Choi Minho, Manna Arnab, Deshmukh Prathmesh, Kizhake Veetil Vijin, Menon Vinod, Pelton Matthew, Waks Edo, Majumdar Arka
Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States.
Department of Physics, University of Washington, Seattle, Washington 98195, United States.
ACS Nano. 2025 Apr 22;19(15):14557-14578. doi: 10.1021/acsnano.4c14992. Epub 2025 Apr 10.
Nonlinear interactions between photons are fundamentally weak as the photons do not interact directly with each other, and any interaction is mediated by matter. This has motivated researchers over many decades to search for strongly nonlinear materials (by controlling electronic properties) and optical resonators with strong spatial and temporal confinement of light. An extreme form of nonlinear optics is quantum nonlinear optics, where we can realize nonlinear interaction between single photons. Such quantum nonlinear optics is at the heart of any photonic quantum information system including analog quantum simulation and fault-tolerant quantum computing. While engineering light-matter interactions can effectively create photon-photon interactions, the required photon number to observe any nonlinearity are normally very high, where any quantum-mechanical signature disappears. However, with emerging low-dimensional materials and engineered photonic resonators, the photon number can be reduced to reach the quantum nonlinear optical regime. In this review paper, we discuss different mechanisms exploited in solid-state platforms to attain quantum nonlinear optics. We review emerging materials and optical resonator architectures with different dimensionalities. We also present future research directions and open problems in this field.
由于光子之间不直接相互作用,而是通过物质介导任何相互作用,所以光子之间的非线性相互作用本质上很微弱。这促使研究人员在数十年间一直寻找强非线性材料(通过控制电子特性)以及对光具有强空间和时间限制的光学谐振器。量子非线性光学是非线性光学的一种极端形式,在其中我们可以实现单光子之间的非线性相互作用。这种量子非线性光学是任何光子量子信息系统(包括模拟量子模拟和容错量子计算)的核心。虽然设计光与物质的相互作用可以有效地产生光子 - 光子相互作用,但观察到任何非线性所需的光子数通常非常高,在这种情况下任何量子力学特征都会消失。然而,随着新兴的低维材料和设计的光子谐振器的出现,光子数可以减少以达到量子非线性光学区域。在这篇综述论文中,我们讨论了在固态平台中用于实现量子非线性光学的不同机制。我们回顾了具有不同维度的新兴材料和光学谐振器架构。我们还提出了该领域未来的研究方向和开放性问题。