Suppr超能文献

开发一种针对大学生的、借助半生成式聊天机器人增强的拖延症移动干预措施:先导随机对照试验。

Development of a Mobile Intervention for Procrastination Augmented With a Semigenerative Chatbot for University Students: Pilot Randomized Controlled Trial.

作者信息

Lee Seonmi, Jeong Jaehyun, Kim Myungsung, Lee Sangil, Kim Sung-Phil, Jung Dooyoung

机构信息

Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.

Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.

出版信息

JMIR Mhealth Uhealth. 2025 Apr 10;13:e53133. doi: 10.2196/53133.

Abstract

BACKGROUND

Procrastination negatively affects university students' academics and mental health. Traditional time management apps lack therapeutic strategies like cognitive behavioral therapy to address procrastination's psychological aspects. Therefore, we developed and integrated a semigenerative chatbot named Moa into a to-do app.

OBJECTIVE

We intended to determine the benefits of the Moa-integrated to-do app over the app without Moa by verifying behavioral and cognitive changes, analyzing the influence of engagement patterns on the changes, and exploring the user experience.

METHODS

The developed chatbot Moa guided users over 30 days in terms of self-observation, strategy establishment, and reflection. The architecture comprised response-generating and procrastination factor-detection algorithms. A pilot randomized controlled trial was conducted with 85 participants (n=37, 44% female; n=48, 56% male) from a university in South Korea. The control group used a to-do app without Moa, whereas the treatment group used a fully automated Moa-integrated app. The Irrational Procrastination Scale, Pure Procrastination Scale, Time Management Behavior Scale, and the Perceived Stress Scale were examined using linear mixed models with repeated measurements obtained before (T0) and after (T1) 1-month use and after 2-month use (T2) to assess the changes in irrational procrastination, pure procrastination, time management and behavior, academic self-regulation, and stress. Intervention engagement, divided into "high," "middle" and "low" clusters, was quantified using app access and use of the to-do list and grouped using k-means clustering. In addition, changes in the psychological scale scores between the control and treatment groups were analyzed within each cluster. User experience was quantified based on the usability, feasibility, and acceptability of and satisfaction with the app, whereas thematic analysis explored the users' subjective responses to app use.

RESULTS

In total, 75 participants completed the study. The interaction of time × procrastination was significant during the required use period (P=.01). The post hoc test indicated a significant improvement from T0 to T1 in the Time Management Behavior Scale and Perceived Stress Scale scores only in the treatment group (P<.001 and P=.009). The changes in Pure Procrastination Scale score after the required use period were significant in all clusters except for the low cluster of the control group. The high cluster in the treatment group exhibited a significant change in the Irrational Procrastination Scale after Bonferroni correction (P=.046). Usability was determined to be good in the treatment group (mean score 72.8, SD 16.0), and acceptability was higher than in the control group (P=.03). Evaluation of user experience indicated that only the participants in the treatment group achieved self-reflection and experienced an alliance with the app.

CONCLUSIONS

The chatbot-integrated app demonstrated greater efficacy in influencing user behavior providing psychological support. It will serve as a valuable tool for managing procrastination and stress together.

TRIAL REGISTRATION

Clinical Research Information Service (CRIS) KCT0009056; https://tinyurl.com/yc84tedk.

摘要

背景

拖延对大学生的学业和心理健康产生负面影响。传统的时间管理应用程序缺乏认知行为疗法等治疗策略来解决拖延的心理层面问题。因此,我们开发了一个名为莫阿(Moa)的半生成式聊天机器人,并将其集成到一个待办事项应用程序中。

目的

我们旨在通过验证行为和认知变化、分析参与模式对这些变化的影响以及探索用户体验,来确定集成了莫阿的待办事项应用程序相对于没有莫阿的应用程序的优势。

方法

开发的聊天机器人莫阿在30天内就自我观察、策略制定和反思等方面对用户进行引导。该架构包括响应生成和拖延因素检测算法。对韩国一所大学的85名参与者(n = 37,44%为女性;n = 48,56%为男性)进行了一项试点随机对照试验。对照组使用没有莫阿的待办事项应用程序,而治疗组使用完全自动化的集成了莫阿的应用程序。使用线性混合模型对非理性拖延量表、纯粹拖延量表、时间管理行为量表和感知压力量表进行检验,这些模型采用在1个月使用前(T0)、使用后(T1)以及2个月使用后(T2)获得的重复测量数据,以评估非理性拖延、纯粹拖延、时间管理和行为、学业自我调节以及压力方面的变化。干预参与度分为“高”“中”和“低”三类,通过应用程序访问和待办事项列表的使用情况进行量化,并使用k均值聚类进行分组。此外,在每个类别中分析对照组和治疗组之间心理量表分数的变化。基于应用程序的可用性、可行性、可接受性和满意度对用户体验进行量化,而主题分析则探索用户对应用程序使用的主观反应。

结果

共有75名参与者完成了研究。在规定的使用期内,时间×拖延的交互作用具有显著性(P = 0.01)。事后检验表明,仅治疗组在时间管理行为量表和感知压力量表分数上从T0到T1有显著改善(P < 0.001和P = 0.009)。在规定的使用期后,除对照组的低类别外,所有类别中纯粹拖延量表分数的变化均具有显著性。经过Bonferroni校正后,治疗组的高类别在非理性拖延量表上有显著变化(P = 0.046)。治疗组的可用性被确定为良好(平均得分72.8,标准差16.0),且可接受性高于对照组(P = 0.03)。用户体验评估表明,只有治疗组的参与者实现了自我反思并与应用程序建立了联系。

结论

集成了聊天机器人的应用程序在影响用户行为和提供心理支持方面显示出更大的功效。它将成为同时管理拖延和压力的有价值工具。

试验注册

临床研究信息服务(CRIS)KCT0009056;https://tinyurl.com/yc84tedk

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19f6/12022524/a9e6dbe6eda9/mhealth_v13i1e53133_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验