Suppr超能文献

利用深度学习发现受自然启发的抗菌肽

Discovery of naturally inspired antimicrobial peptides using deep learning.

作者信息

Yang Cai-Ling, Wang Pan-Pan, Zhou Zhen-Yi, Wu Xiao-Wen, Hua Yi, Chen Jian-Wei, Wang Hong, Wei Bin

机构信息

College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang key laboratory of green, low-carbon, and efficient development of Marine Fishery Resources, Zhejiang University of Technology, Hangzhou 310014, China.

Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.

出版信息

Bioorg Chem. 2025 Jun 15;160:108444. doi: 10.1016/j.bioorg.2025.108444. Epub 2025 Apr 5.

Abstract

Non-ribosomal peptides (NRPs) are promising lead compounds for novel antibiotics. Bioinformatic mining of silent microbial NRPS gene clusters provide crucial insights for the discovery and de novo design of bioactive peptides. Here, we describe the efficient discovery and antibacterial evaluation of novel peptides inspired by metabolite scaffolds encoded by NRPS gene clusters from 216,408 bacterial genomes. In total, 335,024 NRPS gene clusters were identified and dereplicated, yielding 328 unique peptide scaffolds. Using deep learning-based scoring, five antimicrobial peptide candidates (P1-P5) were synthesized via solid-phase chemical synthesis. Among them, peptide P2 exhibited potent antibacterial activity with MIC values of 1-2 μM against two pathogenic strains. Subsequent amino acid optimization guided by deep learning algorithms produced P2.2, a derivative with significantly enhanced antibacterial activity. Mechanistic studies revealed that P2.2 disrupts bacterial membranes and increases permeability by modulating proteins involved in the type VI and III secretion systems. Furthermore, P2.2 demonstrated synergistic effects when combined with conventional antibiotics and exhibited reduced hemolytic activity, improving its therapeutic potential. These findings underscore the immense potential of deep learning to accelerate the discovery of naturally inspired antimicrobial peptides from silent biosynthetic gene clusters.

摘要

非核糖体肽(NRPs)是新型抗生素的有前景的先导化合物。对沉默微生物NRPS基因簇进行生物信息学挖掘,为生物活性肽的发现和从头设计提供了关键见解。在此,我们描述了受216,408个细菌基因组中NRPS基因簇编码的代谢物支架启发而发现的新型肽及其抗菌评估。总共鉴定并去除重复序列的NRPS基因簇有335,024个,产生了328个独特的肽支架。使用基于深度学习的评分方法,通过固相化学合成法合成了5种抗菌肽候选物(P1 - P5)。其中,肽P2对两种致病菌株表现出强效抗菌活性,MIC值为1 - 2 μM。随后在深度学习算法指导下进行氨基酸优化得到了P2.2,这是一种抗菌活性显著增强的衍生物。机制研究表明,P2.2通过调节VI型和III型分泌系统中的相关蛋白来破坏细菌膜并增加通透性。此外,P2.2与传统抗生素联合使用时表现出协同作用,并且溶血活性降低,提高了其治疗潜力。这些发现强调了深度学习在加速从沉默生物合成基因簇中发现天然抗菌肽方面的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验