Suppr超能文献

用于超稳定析氧反应电催化的阳离子空位诱导晶格氧氧化机制

Cation vacancy-induced lattice oxygen oxidation mechanism for ultra-stable OER electrocatalysis.

作者信息

Zhu Sanyuan, Song Yinghang, Zi Yunhai, Zhang Chengxu, Zhang Yue, Qi Qianglong, Yuan Jianliang, Hu Jue

机构信息

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, PR China.

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.

出版信息

J Colloid Interface Sci. 2025 Aug 15;692:137532. doi: 10.1016/j.jcis.2025.137532. Epub 2025 Apr 7.

Abstract

Catalysts adhere to the adsorbate evolution mechanism (AEM) are constrained by the linear scaling relationship between the adsorbates *OOH and *OH, leading to a theoretical overpotential of approximately 370 mV. The lattice oxygen activation mechanism (LOM) is a promising strategy for developing highly active oxygen evolution reaction (OER) electrocatalysts, but it struggles to maintain the structural stability of the catalyst. Herein, transition metal oxide catalysts (MO-M) enriched with metal cation vacancies (V) have been successfully built, demonstrating the OER mechanism of metal oxides changing from AEM to LOM with outstanding structural and electrocatalytic stability. Notably, the CoO-M catalyst maintains stable operation as long as 240 h at high current densities of 1 A cm in harsh industrial condition (30 % KOH and 85 ℃). Density functional theory (DFT) calculations reveal that the downward displacement of the d-band center of the metal in MO-M catalysts and the upward displacement of the O 2p band center result in increased orbital overlap, thereby augmenting the covalency of the M-O bond, which effectively facilitates the LOM reaction pathway while concurrently improving the OER stability. This study has provided a universal method for regulating the transformation of the OER mechanism and facilitated the development of new efficient lattice oxygen redox OER electrocatalysts.

摘要

遵循吸附质演化机制(AEM)的催化剂受到吸附质OOH和OH之间线性标度关系的限制,导致理论过电位约为370 mV。晶格氧活化机制(LOM)是开发高活性析氧反应(OER)电催化剂的一种有前景的策略,但它难以维持催化剂的结构稳定性。在此,成功构建了富含金属阳离子空位(V)的过渡金属氧化物催化剂(MO-M),证明了金属氧化物的OER机制从AEM转变为LOM,具有出色的结构和电催化稳定性。值得注意的是,CoO-M催化剂在苛刻的工业条件(30% KOH和85℃)下,在1 A cm的高电流密度下可稳定运行长达240 h。密度泛函理论(DFT)计算表明,MO-M催化剂中金属d带中心的向下位移和O 2p带中心的向上位移导致轨道重叠增加,从而增强了M-O键的共价性,这有效地促进了LOM反应途径,同时提高了OER稳定性。本研究提供了一种调节OER机制转变的通用方法,促进了新型高效晶格氧氧化还原OER电催化剂的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验