Suppr超能文献

通过引发钴尖晶石氧化物中的晶格氧氧化来设计高效析氧反应(OER)催化剂的策略

Strategic Design for High-Efficiency Oxygen Evolution Reaction (OER) Catalysts by Triggering Lattice Oxygen Oxidation in Cobalt Spinel Oxides.

作者信息

Deng Qingming, Li Hui, Pei Ke, Wong Lok Wing, Zheng Xiaodong, Tsang Chi Shing, Chen Honglin, Shen Wenqian, Ly Thuc Hue, Zhao Jiong, Fu Qiang

机构信息

Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China.

Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.

出版信息

ACS Nano. 2024 Dec 10;18(49):33718-33728. doi: 10.1021/acsnano.4c14158. Epub 2024 Nov 28.

Abstract

High-efficiency catalysts with refined electronic structures are highly desirable for promoting the kinetics of the oxygen evolution reaction (OER) and enhancing catalyst durability. This study comprehensively explores strategies involving metal doping and oxygen vacancies for enhancing the acidic OER catalytic activity of CoO. Through extensive screening of 3d and 4d transition metals using density functional theory (DFT) simulations, we demonstrate that the incorporation of metal dopants and oxygen vacancies into CoO potentially triggers a transition from the adsorbate evolution mechanism (AEM) to the lattice oxygen oxidation mechanism (LOM) in the oxygen evolution reaction (OER). While the formation of the O-O bond in the intermediate *OOH poses challenges, a significantly reduced overpotential facilitates efficient conversion of O to O through the LOM in *OH and lattice oxygen. Additionally, we find that Mn doping can significantly improve the stability of the catalyst. Building upon the rationale above, we employed a dual doping strategy in subsequent experiments to enhance both the activity and stability. Our final design involved the codoping of Mn and Ru in CoO, along with an appropriate amount of oxygen vacancies. This catalyst demonstrates a low overpotential (η = 230 mV) compared to pure CoO and maintains stable operation for over 120 h, representing a 12-fold increase. By exploring and harnessing the LOM, more efficient, stable, and cost-effective OER catalysts can be designed, providing crucial support for technologies such as water electrolysis in clean energy.

摘要

具有精细电子结构的高效催化剂对于促进析氧反应(OER)的动力学和提高催化剂耐久性非常有必要。本研究全面探索了涉及金属掺杂和氧空位的策略,以提高CoO的酸性OER催化活性。通过使用密度泛函理论(DFT)模拟对3d和4d过渡金属进行广泛筛选,我们证明在CoO中引入金属掺杂剂和氧空位可能会在析氧反应(OER)中引发从吸附质演化机制(AEM)到晶格氧氧化机制(LOM)的转变。虽然中间体OOH中O-O键的形成存在挑战,但通过OH中的LOM和晶格氧,显著降低的过电位促进了O向O的有效转化。此外,我们发现Mn掺杂可以显著提高催化剂的稳定性。基于上述原理,我们在后续实验中采用了双掺杂策略来提高活性和稳定性。我们的最终设计涉及在CoO中共掺杂Mn和Ru,以及适量的氧空位。与纯CoO相比,这种催化剂表现出较低的过电位(η = 230 mV),并能保持超过120小时的稳定运行,性能提升了12倍。通过探索和利用LOM,可以设计出更高效、稳定且经济高效的OER催化剂,为清洁能源中的水电解等技术提供关键支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验