Suppr超能文献

斑马鱼中脊索力学和软骨内骨延长的细胞扩张依赖于5'-肌醇磷酸酶Inppl1a。

Cell expansion for notochord mechanics and endochondral bone lengthening in zebrafish depends on the 5'-inositol phosphatase Inppl1a.

作者信息

Voigt Brittney, Frazier Katherine, Yazdi Donya, Klein Jace, Gontarz Paul, Zhang Bo, Sepich Diane S, Mo Julia, Smeeton Joanna, Solnica-Krezel Lilianna, Gray Ryan S

机构信息

Department of Nutritional Sciences, University of Texas at Austin, W 24(th) Street, Austin, TX 78712, USA; Department of Pediatrics Dell Pediatric Research Institute, University of Texas at Austin Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA.

Department of Developmental Biology, Washington University School of Medicine, S Euclid Avenue, St. Louis, MO 63110, USA.

出版信息

Curr Biol. 2025 May 5;35(9):1949-1962.e6. doi: 10.1016/j.cub.2025.03.022. Epub 2025 Apr 9.

Abstract

Cell size is a key contributor to tissue morphogenesis. As a notable example, growth plate hypertrophic chondrocytes use cellular biogenesis and disproportionate fluid uptake to expand 10 to 20 times in size to drive lengthening of endochondral bone. Similarly, notochord vacuolated cells expand to one of the largest cell types in the developing embryo to drive axial extension. In zebrafish, the notochord vacuolated cells undergo vacuole fusion to form a single large, fluid-filled vacuole that fills the cytoplasmic space and contributes to vacuolated cell expansion. When this process goes awry, the notochord lacks sufficient hydrostatic pressure to support vertebral bone deposition, resulting in adult spines with misshapen vertebral bones and scoliosis. However, it remains unclear whether endochondral bone and the notochord share common genetic and cellular mechanisms for regulating cell and tissue expansion. Here, we demonstrate that the 5'-inositol phosphatase gene, inppl1a, regulates notochord expansion independent of vacuole fusion, thereby genetically decoupling these processes. We demonstrate that inppl1a-dependent vacuolated cell expansion is essential to establish normal mechanical properties of the notochord and to facilitate the development of a straight spine. Finally, we find that inppl1a is also important for hypertrophic chondrocyte differentiation and endochondral bone lengthening in fish, as has been shown in the human INPPL1-related endochondral bone disorder, opsismodysplasia. Overall, this work reveals a shared mechanism of cell size regulation that influences disparate tissues critical for skeletal development and short-stature disorders.

摘要

细胞大小是组织形态发生的关键因素。一个显著的例子是,生长板肥大软骨细胞利用细胞生物合成和不成比例的液体摄取,使其大小扩大10到20倍,以驱动软骨内骨的延长。同样,脊索空泡化细胞扩张成为发育中胚胎里最大的细胞类型之一,以驱动轴向延伸。在斑马鱼中,脊索空泡化细胞经历液泡融合,形成一个单一的大的、充满液体的液泡,该液泡填充细胞质空间并有助于空泡化细胞的扩张。当这个过程出现问题时,脊索缺乏足够的静水压力来支持椎骨沉积,导致成年脊柱出现椎骨畸形和脊柱侧弯。然而,尚不清楚软骨内骨和脊索在调节细胞和组织扩张方面是否共享共同的遗传和细胞机制。在这里,我们证明5'-肌醇磷酸酶基因inppl1a独立于液泡融合来调节脊索扩张,从而在遗传上使这些过程脱钩。我们证明,inppl1a依赖的空泡化细胞扩张对于建立脊索的正常力学特性和促进直脊柱的发育至关重要。最后,我们发现inppl1a对于鱼类肥大软骨细胞分化和软骨内骨延长也很重要,正如在人类INPPL1相关的软骨内骨疾病骨发育不全中所显示的那样。总的来说,这项工作揭示了一种细胞大小调节的共同机制,该机制影响对骨骼发育和身材矮小疾病至关重要的不同组织。

相似文献

10
Single-incision sling operations for urinary incontinence in women.女性尿失禁的单切口吊带手术
Cochrane Database Syst Rev. 2017 Jul 26;7(7):CD008709. doi: 10.1002/14651858.CD008709.pub3.

本文引用的文献

6
Morphogenetic Roles of Hydrostatic Pressure in Animal Development.静水压力在动物发育中的形态发生作用。
Annu Rev Cell Dev Biol. 2022 Oct 6;38:375-394. doi: 10.1146/annurev-cellbio-120320-033250. Epub 2022 Jul 8.
9
Twelve years of SAMtools and BCFtools.SAMtools 和 BCFtools 十二年。
Gigascience. 2021 Feb 16;10(2). doi: 10.1093/gigascience/giab008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验