Suppr超能文献

良性乳腺疾病活检图像的空间分辨单细胞形态测量揭示了预测后续浸润性乳腺癌风险的定量细胞形态特征。

Spatially Resolved Single-Cell Morphometry of Benign Breast Disease Biopsy Images Uncovers Quantitative Cytomorphometric Features Predictive of Subsequent Invasive Breast Cancer Risk.

作者信息

Abubakar Mustapha, Fan Shaoqi, Klein Alyssa, Pfeiffer Ruth M, Lawrence Scott, Mutreja Karun, Kimes Teresa M, Richert-Boe Kathryn, Figueroa Jonine D, Gierach Gretchen L, Duggan Maire A, Rohan Thomas E

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health (NIH), Rockville, Maryland.

出版信息

Mod Pathol. 2025 Jul;38(7):100767. doi: 10.1016/j.modpat.2025.100767. Epub 2025 Apr 8.

Abstract

Currently, benign breast disease (BBD) pathologic classification and invasive breast cancer (BC) risk assessment are based on qualitative epithelial changes, with limited utility for BC risk stratification for women with lower-risk category BBD (ie, nonproliferative disease [NPD] and proliferative disease without atypia [PDWA]). Here, machine learning-based single-cell morphometry was used to characterize quantitative changes in epithelial nuclear morphology that reflect functional/structural decline (ie, increasing nuclear size, assessed as epithelial nuclear area and nuclear perimeter), altered DNA chromatin content (ie, increasing nuclear chromasia), and increased cellular crowding/proliferation (ie, increasing nuclear contour irregularity). Cytomorphologic changes reflecting chronic stromal inflammation were assessed using stromal cellular density. Data and pathology materials were obtained from a case-control study (n = 972) nested within a cohort of 15,395 women diagnosed with BBD at Kaiser Permanente Northwest (1971-2012). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations of cytomorphometric features with risk of subsequent BC were assessed using multivariable logistic regression. More than 55 million epithelial and 37 million stromal cells were profiled across 972 BBD images. Cytomorphometric features were individually predictive of subsequent BC risk, independently of BBD histologic classification. However, cytomorphometric features of epithelial functional/structural decline were statistically significantly predictive of low-grade but not high-grade BC following PDWA (OR for low-grade BC per 1-SD increase in nuclear area and nuclear perimeter, 2.10; 95% CI, 1.26-3.49, and 2.22; 95% CI, 1.30-3.78, respectively), whereas stromal inflammation was predictive of high-grade but not low-grade BC following NPD (OR for high-grade BC per 1-SD increase in stromal cellular density, 1.53; 95% CI, 1.13-2.08). Associations of nuclear chromasia and nuclear contour irregularity with subsequent tumor grade were context specific, with both features predicting low-grade BC risk following PDWA (OR per 1-SD, 1.58; 95% CI, 1.06-2.35, and 2.21; 95% CI, 1.25-3.91, for nuclear chromasia and nuclear contour irregularity, respectively) and high-grade BC following NPD (OR per 1-SD, 1.47; 95% CI, 1.11-1.96, and 1.29; 95% CI, 1.00-1.70, for nuclear chromasia and nuclear contour irregularity, respectively). The results indicate that cytomorphometric features on BBD hematoxylin-eosin-stained images might help to refine BC risk estimation and potentially inform BC risk reduction strategies for BBD patients, particularly those currently designated as low risk.

摘要

目前,良性乳腺疾病(BBD)的病理分类和浸润性乳腺癌(BC)风险评估基于定性的上皮细胞变化,对于低风险BBD类别(即非增殖性疾病[NPD]和无异型增生的增殖性疾病[PDWA])的女性进行BC风险分层的效用有限。在此,基于机器学习的单细胞形态测量法用于表征上皮细胞核形态的定量变化,这些变化反映了功能/结构衰退(即核大小增加,通过上皮细胞核面积和核周长评估)、DNA染色质含量改变(即核染色质增加)以及细胞拥挤/增殖增加(即核轮廓不规则性增加)。使用基质细胞密度评估反映慢性基质炎症的细胞形态学变化。数据和病理材料来自一项病例对照研究(n = 972),该研究嵌套于西北凯撒医疗集团(1971 - 2012年)诊断为BBD的15395名女性队列中。使用多变量逻辑回归评估细胞形态测量特征与后续BC风险关联的比值比(OR)和95%置信区间(CI)。对972张BBD图像中的超过5500万个上皮细胞和3700万个基质细胞进行了分析。细胞形态测量特征可独立于BBD组织学分类单独预测后续BC风险。然而,上皮功能/结构衰退的细胞形态测量特征在统计学上显著预测PDWA后的低级别而非高级别BC(核面积和核周长每增加1个标准差,低级别BC的OR分别为2.10;95% CI,1.26 - 3.49和2.22;95% CI,1.30 - 3.78),而基质炎症预测NPD后的高级别而非低级别BC(基质细胞密度每增加1个标准差,高级别BC的OR为1.53;95% CI,1.13 - 2.08)。核染色质和核轮廓不规则性与后续肿瘤级别的关联具有背景特异性,这两个特征均预测PDWA后的低级别BC风险(核染色质和核轮廓不规则性每增加1个标准差,OR分别为1.58;95% CI,1.06 - 2.35和2.21;95% CI,1. _25 - 3.91)以及NPD后的高级别BC风险(核染色质和核轮廓不规则性每增加1个标准差,OR分别为1.47;95% CI,1.11 - 1.96和1.29;95% CI,1._00 - 1.70)。结果表明,BBD苏木精 - 伊红染色图像上的细胞形态测量特征可能有助于优化BC风险估计,并可能为BBD患者,特别是目前被指定为低风险的患者提供BC风险降低策略。

相似文献

2
Benign Breast Disease and Breast Cancer Risk in the Percutaneous Biopsy Era.
JAMA Surg. 2024 Feb 1;159(2):193-201. doi: 10.1001/jamasurg.2023.6382.
3
Cellular senescence predicts breast cancer risk from benign breast disease biopsy images.
Breast Cancer Res. 2025 Mar 11;27(1):37. doi: 10.1186/s13058-025-01993-z.
4
Changes in breast cancer risk associated with benign breast disease from 1967 to 2013.
JNCI Cancer Spectr. 2025 Jan 3;9(1). doi: 10.1093/jncics/pkae128.
5
Mammographic density, endocrine therapy and breast cancer risk: a prognostic and predictive biomarker review.
Cochrane Database Syst Rev. 2021 Oct 26;10(10):CD013091. doi: 10.1002/14651858.CD013091.pub2.
7
Breast cancer risk associated with benign breast disease: systematic review and meta-analysis.
Breast Cancer Res Treat. 2015 Feb;149(3):569-75. doi: 10.1007/s10549-014-3254-6. Epub 2015 Jan 31.
10
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.

本文引用的文献

1
Contribution of Prediagnostic Host Factors to Shaping the Stromal Microenvironment of Breast Cancer among Sub-Saharan African Women.
Cancer Epidemiol Biomarkers Prev. 2025 Apr 3;34(4):462-473. doi: 10.1158/1055-9965.EPI-24-0390.
2
Benign Breast Disease and Breast Cancer Risk in the Percutaneous Biopsy Era.
JAMA Surg. 2024 Feb 1;159(2):193-201. doi: 10.1001/jamasurg.2023.6382.
3
Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence.
Aging Cell. 2023 Dec;22(12):e14012. doi: 10.1111/acel.14012. Epub 2023 Oct 16.
4
Nuclear morphology is a deep learning biomarker of cellular senescence.
Nat Aging. 2022 Aug;2(8):742-755. doi: 10.1038/s43587-022-00263-3. Epub 2022 Aug 15.
5
Cellular enlargement - A new hallmark of aging?
Front Cell Dev Biol. 2022 Nov 10;10:1036602. doi: 10.3389/fcell.2022.1036602. eCollection 2022.
7
Cell size is a determinant of stem cell potential during aging.
Sci Adv. 2021 Nov 12;7(46):eabk0271. doi: 10.1126/sciadv.abk0271.
8
Relation of Quantitative Histologic and Radiologic Breast Tissue Composition Metrics With Invasive Breast Cancer Risk.
JNCI Cancer Spectr. 2021 Feb 6;5(3). doi: 10.1093/jncics/pkab015. eCollection 2021 Jun.
9
Tumor-Associated Stromal Cellular Density as a Predictor of Recurrence and Mortality in Breast Cancer: Results from Ethnically Diverse Study Populations.
Cancer Epidemiol Biomarkers Prev. 2021 Jul;30(7):1397-1407. doi: 10.1158/1055-9965.EPI-21-0055. Epub 2021 May 5.
10
Risk factors for breast cancer development by tumor characteristics among women with benign breast disease.
Breast Cancer Res. 2021 Mar 18;23(1):34. doi: 10.1186/s13058-021-01410-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验