Suppr超能文献

TAME疼痛数据发布:利用音频信号表征疼痛

TAME Pain data release: using audio signals to characterize pain.

作者信息

Dao Tu-Quyen, Schneiders Eike, Williams Jennifer, Bautista John Robert, Seabrooke Tina, Vigneswaran Ganesh, Kolpekwar Rishik, Vashistha Ritwik, Farahi Arya

机构信息

University of Texas at Austin, Department of Molecular Biosciences, Austin, 78712, US.

University of Nottingham, School of Computer Science, Nottingham, NG8 1BB, UK.

出版信息

Sci Data. 2025 Apr 10;12(1):595. doi: 10.1038/s41597-025-04733-2.

Abstract

Accurately assessing pain through speech remains a challenge in medical practice, with profound implications for patient care and patient health outcomes. The TAME Pain dataset addresses this challenge by providing a comprehensive dataset that captures the relationship between induced acute pain and speech in adults. Utilizing the Cold Pressor Task (CPT) method to induce pain, we recorded over 7,000 utterances from 51 participants, correlating their self-reported pain levels with vocal cues. This dataset stands as the largest of its kind to date and includes comprehensive annotations detailing background noise, speech errors, and non-speech vocal features, maximizing its utility for in-depth audio analysis. Our dataset is designed to support the development of reliable, non-invasive pain assessment technologies, particularly in telemedicine and remote healthcare settings. By releasing these data, we aim to facilitate interdisciplinary research in psychology, medical science, and AI, fostering innovations that can enhance pain management practices and improve patient outcomes across diverse clinical environments.

摘要

在医学实践中,通过语音准确评估疼痛仍然是一项挑战,这对患者护理和患者健康结果有着深远影响。TAME疼痛数据集通过提供一个全面的数据集来应对这一挑战,该数据集捕捉了成年人诱发的急性疼痛与语音之间的关系。利用冷加压任务(CPT)方法诱发疼痛,我们记录了51名参与者的7000多条话语,将他们自我报告的疼痛程度与声音线索相关联。这个数据集是迄今为止同类数据集中最大的,并且包括详细的注释,详细说明了背景噪声、语音错误和非语音声音特征,最大限度地提高了其用于深入音频分析的效用。我们的数据集旨在支持可靠的、非侵入性疼痛评估技术的开发,特别是在远程医疗和远程医疗保健环境中。通过发布这些数据,我们旨在促进心理学、医学和人工智能领域的跨学科研究,推动创新,以加强疼痛管理实践并改善不同临床环境下的患者结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cea5/11985987/49741e9f55d9/41597_2025_4733_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验