Bahr Ruth, Anibal James, Bedrick Steven, Bélisle-Pipon Jean-Christophe, Bensoussan Yael, Blaylock Nate, Castermans Joris, Comito Keith, Dorr David, Hale Greg, Jackson Christie, Krussel Andrea, Kuman Kimberly, Komarlu Akash Raj, Lerner-Ellis Jordan, Powell Maria, Ravitsky Vardit, Rameau Anaïs, Reavis Charlie, Sigaras Alexandros, Cruz Samantha Salvi, Vojtech Jenny, Urbano Megan, Watts Stephanie, Zhao Robin, Toghranegar Jamie
Department of Communication Sciences & Disorders, University of South Florida, Tampa, FL, United States.
Center for Interventional Oncology, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States.
Front Digit Health. 2024 Oct 30;6:1484818. doi: 10.3389/fdgth.2024.1484818. eCollection 2024.
The 2024 Voice AI Symposium, presented by the Bridge2AI-Voice Consortium, featured deep-dive educational workshops conducted by experts from diverse fields to explore the latest advancements in voice biomarkers and artificial intelligence (AI) applications in healthcare. Through five workshops, attendees learned about topics including international standardization of vocal biomarker data, real-world deployment of AI solutions, assistive technologies for voice disorders, best practices for voice data collection, and deep learning applications in voice analysis. These workshops aimed to foster collaboration between academia, industry, and healthcare to advance the development and implementation of voice-based AI tools.
Each workshop featured a combination of lectures, case studies, and interactive discussions. Transcripts of audio recordings were generated using Whisper (Version 7.13.1) and summarized by ChatGPT (Version 4.0), then reviewed by the authors. The workshops covered various methodologies, from signal processing and machine learning operations (MLOps) to ethical concerns surrounding AI-powered voice data collection. Practical demonstrations of AI-driven tools for voice disorder management and technical discussions on implementing voice AI models in clinical and non-clinical settings provided attendees with hands-on experience.
Key outcomes included the discussion of international standards to unify stakeholders in vocal biomarker research, practical challenges in deploying AI solutions outside the laboratory, review of Bridge2AI-Voice data collection processes, and the potential of AI to empower individuals with voice disorders. Additionally, presenters shared innovations in ethical AI practices, scalable machine learning frameworks, and advanced data collection techniques using diverse voice datasets. The symposium highlighted the successful integration of AI in detecting and analyzing voice signals for various health applications, with significant advancements in standardization, privacy, and clinical validation processes.
The symposium underscored the importance of interdisciplinary collaboration to address the technical, ethical, and clinical challenges in the field of voice biomarkers. While AI models have shown promise in analyzing voice data, challenges such as data variability, security, and scalability remain. Future efforts must focus on refining data collection standards, advancing ethical AI practices, and ensuring diverse dataset inclusion to improve model robustness. By fostering collaboration among researchers, clinicians, and technologists, the symposium laid a foundation for future innovations in AI-driven voice analysis for healthcare diagnostics and treatment.
由Bridge2AI语音联盟主办的2024年语音人工智能研讨会,设有深入的教育工作坊,由来自不同领域的专家主持,以探索语音生物标志物和人工智能(AI)在医疗保健领域应用的最新进展。通过五个工作坊,与会者了解了包括嗓音生物标志物数据的国际标准化、人工智能解决方案的实际应用、嗓音障碍辅助技术、语音数据收集的最佳实践以及深度学习在语音分析中的应用等主题。这些工作坊旨在促进学术界、产业界和医疗保健领域之间的合作,以推动基于语音的人工智能工具的开发和应用。
每个工作坊都结合了讲座、案例研究和互动讨论。音频记录的文字记录使用Whisper(版本7.13.1)生成,并由ChatGPT(版本4.0)进行总结,然后由作者进行审核。工作坊涵盖了各种方法,从信号处理和机器学习操作(MLOps)到围绕人工智能驱动的语音数据收集的伦理问题。人工智能驱动的嗓音障碍管理工具的实际演示以及关于在临床和非临床环境中实施语音人工智能模型的技术讨论,为与会者提供了实践经验。
主要成果包括讨论统一嗓音生物标志物研究中各利益相关方的国际标准、在实验室之外部署人工智能解决方案的实际挑战、对Bridge2AI语音数据收集过程的审查,以及人工智能增强嗓音障碍患者能力的潜力。此外,演讲者分享了在符合伦理的人工智能实践、可扩展的机器学习框架以及使用多样化语音数据集的先进数据收集技术方面的创新。研讨会强调了人工智能在检测和分析语音信号以用于各种健康应用方面的成功整合,在标准化、隐私和临床验证过程方面取得了重大进展。
研讨会强调了跨学科合作对于解决语音生物标志物领域的技术、伦理和临床挑战的重要性。虽然人工智能模型在分析语音数据方面显示出了前景,但数据变异性、安全性和可扩展性等挑战仍然存在。未来的工作必须专注于完善数据收集标准、推进符合伦理的人工智能实践,并确保纳入多样化的数据集以提高模型的稳健性。通过促进研究人员、临床医生和技术专家之间的合作,研讨会为未来在人工智能驱动的语音分析用于医疗诊断和治疗方面的创新奠定了基础。