Vogg Richard, Lüddecke Timo, Henrich Jonathan, Dey Sharmita, Nuske Matthias, Hassler Valentin, Murphy Derek, Fischer Julia, Ostner Julia, Schülke Oliver, Kappeler Peter M, Fichtel Claudia, Gail Alexander, Treue Stefan, Scherberger Hansjörg, Wörgötter Florentin, Ecker Alexander S
Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany.
Chairs of Statistics and Econometrics and Campus Institute Data Science, University of Göttingen, Göttingen, Germany.
Nat Methods. 2025 Apr 10. doi: 10.1038/s41592-025-02653-y.
Advances in computer vision and increasingly widespread video-based behavioral monitoring are currently transforming how we study animal behavior. However, there is still a gap between the prospects and practical application, especially in videos from the wild. In this Perspective, we aim to present the capabilities of current methods for behavioral analysis, while at the same time highlighting unsolved computer vision problems that are relevant to the study of animal behavior. We survey state-of-the-art methods for computer vision problems relevant to the video-based study of individualized animal behavior, including object detection, multi-animal tracking, individual identification and (inter)action understanding. We then review methods for effort-efficient learning, one of the challenges from a practical perspective. In our outlook on the emerging field of computer vision for animal behavior, we argue that the field should develop approaches to unify detection, tracking, identification and (inter)action understanding in a single, video-based framework.
计算机视觉的进步以及基于视频的行为监测日益广泛的应用,正在改变我们研究动物行为的方式。然而,前景与实际应用之间仍存在差距,尤其是在来自野外的视频方面。在这篇视角文章中,我们旨在展示当前行为分析方法的能力,同时突出与动物行为研究相关的尚未解决的计算机视觉问题。我们调查了与基于视频的个体动物行为研究相关的计算机视觉问题的前沿方法,包括目标检测、多动物跟踪、个体识别以及(交互)行为理解。然后我们回顾了从实际角度来看的挑战之一——高效学习的方法。在我们对动物行为计算机视觉新兴领域的展望中,我们认为该领域应开发方法,在一个基于视频的单一框架中统一检测、跟踪、识别以及(交互)行为理解。