Chen Haitao, Yang Yongxun, Dong Zhaohui
School of Management, Jilin University, Changchun, 130022, China.
Sci Rep. 2025 Apr 10;15(1):12352. doi: 10.1038/s41598-025-87663-8.
This study investigates the impact of lithium-ion battery (LIB) design characteristics on recycling efficiency through a comprehensive mixed-methods research approach. The study employs structural equation modeling (SEM) and analytic hierarchy process (AHP) methodologies, analyzing data collected through systematic expert interviews with 15 industry professionals and structured surveys of 150 battery manufacturing and recycling facilities. Through rigorous qualitative and quantitative analysis, this research examines the relationships between design complexity, material diversity, connection methods, and recycling process efficiency and overall recycling performance. The research methodology combines in-depth interviews, expert consultations, and statistical analysis to ensure robust findings. Data sources include primary data from industry surveys, expert interviews, and secondary data from technical documentation and recycling facility reports, providing a comprehensive foundation for the analysis. The research compares recycling efficiency across different battery types, including traditional designs, cell-to-pack (CTP), and cell-to-body (CTB), utilizing multi-group analysis. Through life cycle cost analysis and environmental impact assessment, the study quantifies the potential economic and ecological benefits of optimized designs. Results indicate that while optimized LIB designs may increase initial production costs, they significantly enhance recycling efficiency, reduce total lifecycle costs, and minimize environmental impacts. SEM analysis reveals that design characteristics indirectly influence overall recycling performance by affecting recycling process efficiency. Multi-group analysis demonstrates the superior recyclability of CTP and CTB designs compared to traditional configurations. The study also evaluates the improvement potential for recycling efficiency across various materials, providing a basis for optimizing recycling strategies. This research offers valuable insights for battery design, recycling technology innovation, and policy formulation, emphasizing the importance of incorporating recyclability considerations in LIB development. It contributes significantly to advancing the energy storage industry towards a circular economy model.
本研究通过全面的混合方法研究途径,调查锂离子电池(LIB)设计特征对回收效率的影响。该研究采用结构方程模型(SEM)和层次分析法(AHP)方法,分析通过对15名行业专业人士进行系统专家访谈以及对150家电池制造和回收设施进行结构化调查收集的数据。通过严格的定性和定量分析,本研究考察了设计复杂性、材料多样性、连接方式与回收过程效率及整体回收性能之间的关系。研究方法结合了深入访谈、专家咨询和统计分析,以确保研究结果的可靠性。数据来源包括行业调查的原始数据、专家访谈以及技术文档和回收设施报告中的二手数据,为分析提供了全面的基础。该研究利用多组分析比较了不同电池类型(包括传统设计、电芯到电池包(CTP)和电芯到车身(CTB))的回收效率。通过生命周期成本分析和环境影响评估,该研究量化了优化设计的潜在经济和生态效益。结果表明,虽然优化的锂离子电池设计可能会增加初始生产成本,但它们能显著提高回收效率、降低总生命周期成本并将环境影响降至最低。结构方程模型分析表明,设计特征通过影响回收过程效率间接影响整体回收性能。多组分析表明,与传统配置相比,CTP和CTB设计具有更高的可回收性。该研究还评估了各种材料回收效率的提升潜力,为优化回收策略提供了依据。本研究为电池设计、回收技术创新和政策制定提供了有价值的见解,强调了在锂离子电池开发中纳入可回收性考量的重要性。它为推动储能行业向循环经济模式发展做出了重大贡献。