Yue Xiaolei, Peng Li, Liu Shenhui, Zhang Bingjie, Zhang Xiaodan, Chang Hao, Pei Yuan, Li Xiaoting, Liu Junlin, Shui Wenqing, Wu Lijie, Xu Huji, Liu Zhi-Jie, Hua Tian
iHuman Institute, ShanghaiTech University, Shanghai, China.
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
Cell Res. 2025 Apr 11. doi: 10.1038/s41422-025-01092-w.
The regulation of pH homeostasis is crucial in many biological processes vital for survival, growth, and function of life. The pH-sensing G protein-coupled receptors (GPCRs), including GPR4, GPR65 and GPR68, play a pivotal role in detecting changes in extracellular proton concentrations, impacting both physiological and pathological states. However, comprehensive understanding of the proton sensing mechanism is still elusive. Here, we determined the cryo-electron microscopy structures of GPR4 and GPR65 in various activation states across different pH levels, coupled with G, G or G proteins, as well as a small molecule NE52-QQ57-bound inactive GPR4 structure. These structures reveal the dynamic nature of the extracellular loop 2 and its signature conformations in different receptor states, and disclose the proton sensing mechanism mediated by networks of extracellular histidine and carboxylic acid residues. Notably, we unexpectedly captured partially active intermediate states of both GPR4-G and GPR4-G complexes, and identified a unique allosteric binding site for NE52-QQ57 in GPR4. By integrating prior investigations with our structural analysis and mutagenesis data, we propose a detailed atomic model for stepwise proton sensation and GPCR activation. These insights may pave the way for the development of selective ligands and targeted therapeutic interventions for pH sensing-relevant diseases.
pH 稳态的调节在许多对生命的生存、生长和功能至关重要的生物过程中起着关键作用。pH 传感 G 蛋白偶联受体(GPCR),包括 GPR4、GPR65 和 GPR68,在检测细胞外质子浓度变化方面发挥着关键作用,影响生理和病理状态。然而,对质子传感机制的全面理解仍然难以捉摸。在这里,我们确定了 GPR4 和 GPR65 在不同 pH 水平下与 G、G 或 G 蛋白结合的各种激活状态下的冷冻电镜结构,以及与小分子 NE52-QQ57 结合的非活性 GPR4 结构。这些结构揭示了细胞外环 2 的动态性质及其在不同受体状态下的特征构象,并揭示了由细胞外组氨酸和羧酸残基网络介导的质子传感机制。值得注意的是,我们意外地捕获了 GPR4-G 和 GPR4-G 复合物的部分活性中间状态,并在 GPR4 中确定了 NE52-QQ57 的独特变构结合位点。通过将先前的研究与我们的结构分析和诱变数据相结合,我们提出了一个详细的逐步质子感知和 GPCR 激活的原子模型。这些见解可能为与 pH 传感相关疾病的选择性配体开发和靶向治疗干预铺平道路。