Howard Matthew K, Hoppe Nicholas, Huang Xi-Ping, Mitrovic Darko, Billesbølle Christian B, Macdonald Christian B, Mehrotra Eshan, Rockefeller Grimes Patrick, Trinidad Donovan D, Delemotte Lucie, English Justin G, Coyote-Maestas Willow, Manglik Aashish
Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA.
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics graduate program, University of California, San Francisco, San Francisco, CA 94143, USA.
Cell. 2025 Feb 6;188(3):671-687.e20. doi: 10.1016/j.cell.2024.11.036. Epub 2025 Jan 2.
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating ∼9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity.
三种质子感应型G蛋白偶联受体(GPCR)——GPR4、GPR65和GPR68——对细胞外pH作出反应以调节多种生理功能。质子如何激活这些受体目前尚不清楚。我们确定了每种受体的低温电子显微镜(cryo-EM)结构,以了解质子感应残基的空间排列。通过深度突变扫描(DMS),我们通过生成约9500个突变体并测量它们对信号传导和表面表达的影响,确定了GPR68激活过程中每个残基的功能重要性。恒定pH分子动力学模拟提供了对关键残基的构象景观和质子化模式的见解。这种无偏见的方法表明,与其他质子敏感通道和受体不同,没有单个位点对质子识别至关重要。相反,一个可滴定残基网络从细胞外表面延伸到跨膜区域,汇聚在典型基序上以激活质子感应型GPCR。我们整合结构、模拟和无偏见功能研究的方法为理解GPCR信号复杂性提供了一个框架。