Suppr超能文献

G蛋白偶联受体感知质子的分子基础。

Molecular basis of proton sensing by G protein-coupled receptors.

作者信息

Howard Matthew K, Hoppe Nicholas, Huang Xi-Ping, Mitrovic Darko, Billesbølle Christian B, Macdonald Christian B, Mehrotra Eshan, Rockefeller Grimes Patrick, Trinidad Donovan D, Delemotte Lucie, English Justin G, Coyote-Maestas Willow, Manglik Aashish

机构信息

Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics graduate program, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Cell. 2025 Feb 6;188(3):671-687.e20. doi: 10.1016/j.cell.2024.11.036. Epub 2025 Jan 2.

Abstract

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating ∼9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity.

摘要

三种质子感应型G蛋白偶联受体(GPCR)——GPR4、GPR65和GPR68——对细胞外pH作出反应以调节多种生理功能。质子如何激活这些受体目前尚不清楚。我们确定了每种受体的低温电子显微镜(cryo-EM)结构,以了解质子感应残基的空间排列。通过深度突变扫描(DMS),我们通过生成约9500个突变体并测量它们对信号传导和表面表达的影响,确定了GPR68激活过程中每个残基的功能重要性。恒定pH分子动力学模拟提供了对关键残基的构象景观和质子化模式的见解。这种无偏见的方法表明,与其他质子敏感通道和受体不同,没有单个位点对质子识别至关重要。相反,一个可滴定残基网络从细胞外表面延伸到跨膜区域,汇聚在典型基序上以激活质子感应型GPCR。我们整合结构、模拟和无偏见功能研究的方法为理解GPCR信号复杂性提供了一个框架。

相似文献

1
Molecular basis of proton sensing by G protein-coupled receptors.G蛋白偶联受体感知质子的分子基础。
Cell. 2025 Feb 6;188(3):671-687.e20. doi: 10.1016/j.cell.2024.11.036. Epub 2025 Jan 2.
7
Proton perception and activation of a proton-sensing GPCR.质子感知与质子敏感型G蛋白偶联受体的激活
Mol Cell. 2025 Apr 17;85(8):1640-1657.e8. doi: 10.1016/j.molcel.2025.02.030. Epub 2025 Apr 10.
10
The evolution and mechanism of GPCR proton sensing.GPCR 质子感应的演化和机制。
J Biol Chem. 2021 Jan-Jun;296:100167. doi: 10.1074/jbc.RA120.016352. Epub 2020 Dec 13.

引用本文的文献

本文引用的文献

2
Elucidating the Activation Mechanism of the Proton-sensing GPR68 Receptor.阐明质子感应 GPR68 受体的激活机制。
J Mol Biol. 2024 Aug 15;436(16):168688. doi: 10.1016/j.jmb.2024.168688. Epub 2024 Jun 25.
5
Time-resolved cryo-EM of G-protein activation by a GPCR.G蛋白偶联受体(GPCR)激活G蛋白的时间分辨冷冻电镜研究
Nature. 2024 May;629(8014):1182-1191. doi: 10.1038/s41586-024-07153-1. Epub 2024 Mar 13.
8
The energetic and allosteric landscape for KRAS inhibition.KRAS抑制的能量和变构格局。
Nature. 2024 Feb;626(7999):643-652. doi: 10.1038/s41586-023-06954-0. Epub 2023 Dec 18.
10
Protons taken hostage: Dynamic H-bond networks of the pH-sensing GPR68.被“挟持”的质子:pH 传感受体 GPR68 的动态氢键网络
Comput Struct Biotechnol J. 2023 Sep 2;21:4370-4384. doi: 10.1016/j.csbj.2023.08.034. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验