Suppr超能文献

用于强化全固态电池中阴极/电解质界面的原位形成锂化氯化铁纳米锚定物

In Situ Formed Lithiated Iron Chloride Nanoanchors for Reinforcing Cathode/Electrolyte Interfaces in All-Solid-State Batteries.

作者信息

Gao Kang-Ning, Sun Zhuang, Su Pei-Yuan, Yuan Meng-Wei, Xu Jing-Shen, Kong Qing-Yu, Bai Fan, Zhang Tao

机构信息

State Key Lab of High-Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Small. 2025 May;21(21):e2500597. doi: 10.1002/smll.202500597. Epub 2025 Apr 10.

Abstract

A critical challenge for chloride-based all-solid-state batteries (ASSBs) is the limited lithium-ion transport at the cathode/electrolyte interface, driven by stress-induced cracks from cathode material volume changes, poor spatial distribution of active materials and solid electrolyte (SE) particles, and low stack pressure. In this study, an innovative design of island-like nanoanchors on the high-nickel cathode (NCM) surface is proposed to mechanically suppress the interfacial crack formation and propagation and electrochemically enhance Li transport. These nanoanchors, formed via in situ lithiation of iron chloride (LFC), possess a low elastic modulus, Li conductivity, and electrochemical activity and are prepared using a simple physical vapor deposition method. The multifunctional LFC nanoanchors not only improve SE coverage on the NCM surface from mixing to pressing but also maintain stable physical contact throughout cycling, thereby reinforcing lithium-ion transport and lithiation-delithiation interactions at the NCM/SE interface. As a result, the LFC-coated NCM (F@NCM)-based battery demonstrates excellent rate performance and capacity retention (90.2% after 200 cycles) under low stack pressure (≈5 MPa). This scalable and practical strategy provides a promising solution for optimizing cathode interfaces, marking a significant advancement in the development of high-performance ASSBs.

摘要

基于氯化物的全固态电池(ASSB)面临的一个关键挑战是,在阴极/电解质界面处锂离子传输受限,这是由阴极材料体积变化引起的应力诱导裂纹、活性材料和固体电解质(SE)颗粒的空间分布不佳以及堆叠压力低所导致的。在本研究中,提出了一种在高镍阴极(NCM)表面设计岛状纳米锚的创新方法,以机械抑制界面裂纹的形成和扩展,并在电化学方面增强锂传输。这些纳米锚是通过氯化铁(LFC)的原位锂化形成的,具有低弹性模量、锂电导率和电化学活性,并采用简单的物理气相沉积方法制备。多功能LFC纳米锚不仅改善了从混合到压制过程中NCM表面的SE覆盖,而且在整个循环过程中保持稳定的物理接触,从而加强了NCM/SE界面处的锂离子传输和锂化-脱锂相互作用。因此,基于涂覆LFC的NCM(F@NCM)的电池在低堆叠压力(≈5 MPa)下表现出优异的倍率性能和容量保持率(200次循环后为90.2%)。这种可扩展且实用的策略为优化阴极界面提供了一个有前景的解决方案,标志着高性能ASSB开发的重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验