Zhang Bowen, Zheng Dinuo, Yiming Shi, Oyama Kazuhiro, Ito Masahiro, Ikari Masaomi, Kigawa Takanori, Mikawa Tsutomu, Miyake Takeo
Graduate School of Information, Production and Systems Waseda University Kitakyushu Fukuoka 808-0135 Japan.
RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama Kanagawa 230-0045 Japan.
Small Sci. 2021 Sep 9;1(12):2100069. doi: 10.1002/smsc.202100069. eCollection 2021 Dec.
Hollow nanostructures combined with electroporation are potentially valuable in interdisciplinary fields due to their ability to transport versatile cargos into adhesive cells. However, they require voltages over 1.5 V to electroporate the physical barrier of the cell membrane inducing cell death and differentiation processes. Intracellular delivery is exhibited using a metal-organic hybrid nanotube (NT) stamp that physically inserts into the cells and subsequently injects versatile molecules at an extremely low voltage of ±50 mV (less than membrane potential). The hybrid NTs consist of Au NTs polymerizing electrochemically 3,4-ethylenedioxythiophene monomer and supportive polycarbonate membrane. The hybrid stamp improves the cell viability by 94% for a 30 min physical insertion while decreasing the cell viability to 1% using the original Au NTs. Furthermore, the hybrid stamp acts as an electrochemical gate that can open the pore at ±50 mV to transport small molecules of calcein dye with high efficiency (99%) and viability (96.8%). The hybrid nanogate can also transport large molecules of green fluorescent protein (GFP) with 84% efficiency and 98.5% viability, and GFP plasmid at a transfection rate of ≈10%. Thus, the present hybrid stamping can potentially deliver versatile molecules into adhesive cells.
中空纳米结构与电穿孔相结合,因其能够将多种物质输送到黏附细胞中,在跨学科领域具有潜在价值。然而,它们需要超过1.5V的电压来对细胞膜的物理屏障进行电穿孔,从而诱导细胞死亡和分化过程。使用金属有机混合纳米管(NT)印章进行细胞内递送,该印章可物理插入细胞并随后以±50mV(低于膜电位)的极低电压注入多种分子。混合纳米管由电化学聚合3,4-亚乙基二氧噻吩单体的金纳米管和支撑性聚碳酸酯膜组成。对于30分钟的物理插入,混合印章可将细胞活力提高94%,而使用原始金纳米管时细胞活力会降至1%。此外,混合印章充当电化学门,可在±50mV时打开孔隙,高效(99%)且有活力(96.8%)地运输钙黄绿素染料小分子。混合纳米门还能以84%的效率和98.5%的活力运输绿色荧光蛋白(GFP)大分子,以及以约10%的转染率运输GFP质粒。因此,目前的混合冲压技术有可能将多种分子递送至黏附细胞中。