Silverman Alexandra A, Olszewski Jason D, Siadat Seyed Mohammad, Ruberti Jeffrey W
Department of Bioengineering, Northeastern University, Boston, MA, USA.
Lead contact.
Matter. 2024 Apr 3;7(4):1533-1557. doi: 10.1016/j.matt.2024.01.023. Epub 2024 Feb 16.
Currently, there is no mechanistic model that fully explains the initial synthesis and organization of durable animal structure. As a result, our understanding of extracellular matrix (ECM) development and pathologies (e.g., persistent fibrosis) remains limited. Here, we identify and characterize cell-generated mechanical strains that direct the assembly of the ECM. Cell kinematics comprise cooperative retrograde "pulls" that organize and precipitate biopolymer structure along lines of tension. High-resolution optical microscopy revealed five unique classes of retrograde "pulls" that result in the production of filaments. Live-cell confocal imaging confirmed that retrograde pulls can directly cause the formation of fibronectin filaments that then colocalize with collagen aggregates exported from the cell, producing persistent elongated structures aligned with the direction of the tension. The findings suggest a new model for initial durable structure formation in animals. The results have important implications for ECM development and growth and life-threatening pathologies of the ECM, such as fibrosis.
目前,尚无一个能充分解释持久动物结构的初始合成与组织的机制模型。因此,我们对细胞外基质(ECM)发育及病变(如持续性纤维化)的理解仍然有限。在此,我们识别并表征了指导ECM组装的细胞产生的机械应变。细胞运动学包括协同逆行“牵拉”,这些牵拉沿着张力线组织并沉淀生物聚合物结构。高分辨率光学显微镜揭示了导致细丝产生的五类独特的逆行“牵拉”。活细胞共聚焦成像证实,逆行牵拉可直接导致纤连蛋白细丝的形成,这些细丝随后与从细胞输出的胶原聚集体共定位,产生与张力方向一致的持久伸长结构。这些发现提示了一种动物初始持久结构形成的新模型。这些结果对ECM发育、生长以及ECM危及生命的病变(如纤维化)具有重要意义。