Department of Biomedical Engineering, Duke University, Durham, NC 27701.
Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1992-1997. doi: 10.1073/pnas.1811095116. Epub 2019 Jan 23.
Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.
微结构线索可在体内和生物材料支架中驱动纤维状胶原蛋白的定向沉积,但这一过程背后的细胞信号事件尚未得到很好的理解。本研究利用一种多细胞图案化模型系统,可在胶原蛋白基质组装过程中观察细胞内信号事件,从而研究钙 (Ca) 信号在人骨髓间充质干细胞 (MSCs) 中的作用。在纤维状胶原蛋白组装过程中,我们观察到 MSCs 中自发的 Ca 振荡,并假设瞬时受体电位香草酸 4 (TRPV4) 离子通道,一种机械敏感性 Ca 渗透性通道,可能调节该信号。TRPV4 抑制几乎在胶原蛋白基质组装的初始阶段消除了 Ca 信号,而在稍后阶段则具有降低但显著的影响。重要的是,阻断 TRPV4 活性显著降低了定向胶原纤维的组装;相反,激活 TRPV4 加速了定向胶原的形成。发现 TRPV4 依赖性 Ca 振荡独立于图案形状或亚图案细胞位置,这表明这种信号机制对于定向胶原形成是必要的,但在没有迫使多细胞对齐的物理(微结构)线索的情况下,它不是充分的。由于已知细胞产生的机械力对于基质组装过程至关重要,我们使用基于 FRET 的张力传感器研究了 TRPV4 介导的 Ca 信号在 MSCs 中承载负荷的黏着斑蛋白 vinculin 产生的力中的作用。TRPV4 抑制降低了 vinculin 上的拉伸力,而 TRPV4 激活导致 vinculin 的动态卸载和再加载。总之,这些发现表明 TRPV4 活性调节细胞-基质黏附处的力,并对 MSCs 定向胶原基质组装至关重要。