Anbari Samira, Gómez-Gálvez Pedro, Vicente-Munuera Pablo, Escudero Luis M, Buceta Javier
Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21205, USA.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave., Trumpington, Cambridge CB2 0QH, Cambridgeshire, UK.
Comput Struct Biotechnol J. 2025 Mar 19;27:1204-1214. doi: 10.1016/j.csbj.2025.03.011. eCollection 2025.
Non-invasive force inference based on imaging data has significantly advanced our understanding of the mechanical cues driving morphogenesis. In 2D studies of confluent tissues, these methods allow for the computation of forces acting on cells by analyzing their geometrical features. Here, we present a novel approach for 3D force and energy inference in curved epithelia. Specifically, we focus on tubular epithelia, which form the foundation of many vital organs, including the lungs, kidneys, and vasculature. Our technique analyzes the average mechanical behavior of cells along their apico-basal axis and is based on an optimal parametrization of a vertex model aimed at obtaining effective tissue parameters. We apply our method to data to investigate the mechanical consequences of different 3D cellular packing scenarios. Our results reveal that in squamous epithelia, prismatic cellular shapes are mechanically stable. However, in cubic/columnar tubes, prismatic shapes are incompatible with the adhesion required to maintain tissue integrity. In conclusion, this study indicates that in cubic/columnar epithelia, stability can only be achieved if cells undergo apico-basal intercalations and adopt an alternative shape: the scutoid.
基于成像数据的非侵入性力推断极大地推进了我们对驱动形态发生的机械信号的理解。在汇合组织的二维研究中,这些方法通过分析细胞的几何特征来计算作用于细胞的力。在此,我们提出了一种用于弯曲上皮细胞三维力和能量推断的新方法。具体而言,我们聚焦于管状上皮细胞,它们构成了包括肺、肾和脉管系统在内的许多重要器官的基础。我们的技术沿着细胞的顶 - 基轴分析细胞的平均力学行为,并且基于顶点模型的最优参数化,旨在获得有效的组织参数。我们将我们的方法应用于数据,以研究不同三维细胞堆积情况的力学后果。我们的结果表明,在鳞状上皮细胞中,棱柱形细胞形状在力学上是稳定的。然而,在立方/柱状管中,棱柱形形状与维持组织完整性所需的黏附不相容。总之,这项研究表明,在立方/柱状上皮细胞中,只有当细胞进行顶 - 基插入并采用另一种形状:盾形时,才能实现稳定性。