Suppr超能文献

人工智能走向实体化。

Artificial Intelligence Goes Physical.

作者信息

Jing Zhaokun, Yang Yuchao

机构信息

Key Laboratory of Microelectronic Devices and Circuits (MOE) Department of Micro/nanoelectronics Peking University Beijing 100871 China.

Center for Brain Inspired Chips Institute for Artificial Intelligence Peking University Beijing 100871 China.

出版信息

Small Sci. 2021 Feb 15;1(3):2000065. doi: 10.1002/smsc.202000065. eCollection 2021 Mar.

Abstract

Exploiting the intrinsic nonlinearity in physical reservoirs, e.g., dopant-atom networks, provides a new approach toward highly efficient computing such as feature projection and classification. In a recent study by Chen et al., the computational capability of dopant-atom network was investigated and found to diminish as the signal-to-noise ratio (SNR) increased, indicating the existence of an optimal bias condition. Although high SNR is often pursued in signal processing, it shows that embracing noise in non-conventional computing systems may lead to a leap in computing capacity. This work showcased that material or device physics in different domains offer valuable substrates for complex computing functions and high energy efficiency.

摘要

利用物理储能器(例如掺杂原子网络)中的固有非线性,为诸如特征投影和分类等高效计算提供了一种新方法。在Chen等人最近的一项研究中,对掺杂原子网络的计算能力进行了研究,发现随着信噪比(SNR)的增加,其计算能力会减弱,这表明存在最佳偏置条件。尽管在信号处理中通常追求高信噪比,但这表明在非传统计算系统中接受噪声可能会导致计算能力的飞跃。这项工作表明,不同领域的材料或器件物理为复杂的计算功能和高能效提供了有价值的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b15/11935961/ae697e8fb2c2/SMSC-1-2000065-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验