Suppr超能文献

基于柱[5]芳烃的超分子组装体在人工光捕获系统中的应用。

Pillar[5]arene-based supramolecular assemblies application in artificial light-harvesting systems.

作者信息

Zhong Kaipeng, Pang Wenrui, Yang Zhancheng, Bian Shaoju, Xu Naicai

机构信息

Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, College of Chemistry and Chemical Engineering, Qinghai Normal University Xining 810008 China

出版信息

RSC Adv. 2025 Apr 10;15(15):11308-11318. doi: 10.1039/d5ra00882d. eCollection 2025 Apr 9.

Abstract

Due to the global energy crisis, many scientists have tried to solve this problem by constructing artificial light-harvesting systems (ALHSs) to mimic photosynthesis. However, achieving efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Supramolecular assemblies based on non-covalent interactions provide diverse approaches for the preparation of ALHSs with high energy-transfer efficiency and more flexible options. Many efficient pillar[5]arene-based supramolecular ALHSs with extremely high energy transfer efficiency and the antenna effect have been successfully constructed by non covalent interactions. These ALHSs have expanded various properties on photoluminescence and photocatalysis, enabling promising applications on cell imaging, supramolecular catalysis and so on. In this review, we highlight the recent developments in pillar[5]arene-based supramolecular assemblies application in light-harvesting systems. We also provide the construction, modulation, and applications of supramolecular ALHSs, and provide a brief discussion of their research prospects, challenges, and future opportunities.

摘要

由于全球能源危机,许多科学家试图通过构建人工光捕获系统(ALHSs)来模仿光合作用以解决这一问题。然而,实现高效的能量转移仍然是一个挑战,因为激子需要在供体基质内传播更长的扩散长度才能到达受体。基于非共价相互作用的超分子组装为制备具有高能量转移效率和更灵活选择的ALHSs提供了多种方法。通过非共价相互作用成功构建了许多具有极高能量转移效率和天线效应的基于柱[5]芳烃的高效超分子ALHSs。这些ALHSs在光致发光和光催化方面展现出了各种特性,在细胞成像、超分子催化等方面具有广阔的应用前景。在这篇综述中,我们重点介绍了基于柱[5]芳烃的超分子组装在光捕获系统中的最新应用进展。我们还介绍了超分子ALHSs的构建、调控和应用,并简要讨论了它们的研究前景、挑战和未来机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b736/11983382/9126301a902b/d5ra00882d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验