Suppr超能文献

用于植物身份验证的单类建模:综述

One-class modeling for verification of botanical identity: a review.

作者信息

Harnly James

机构信息

Methods and Applications Food Composition Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States.

出版信息

Front Pharmacol. 2025 Mar 27;16:1504230. doi: 10.3389/fphar.2025.1504230. eCollection 2025.

Abstract

One-class modeling is a supervised multivariate botanical identification method based on principal component analysis (PCA) that constructs a model based only on the characteristics of the reference samples and uses the Q statistic as a combined metric. Test samples are judged to be similar (authentic) if their combined metric falls within the model limits or different (adulterated or contaminated) if the metric falls outside the model limits. This review initially considers three major factors affecting identification: the number of variables (univariate versus multivariate), the number of classes (one-class versus multi-class), and the type of analysis (quantitative versus qualitative). Multivariate analysis is commonly used for identification, providing a broader coverage of the identity specifications of the samples. With a combined metric, multivariate methods are analogous to univariate methods. One-class modeling and multi-class modeling employ different approaches for identification with one-class modeling being more flexible. While most methods to date have had a quantitative basis, qualitative methods are possible. This review focuses on multivariate, one-class modeling based on PCA. Examples are presented for the application of one-class modeling to identification of American ginseng (), , Black Cohosh (), and Maca (). These examples demonstrate the utility and flexibility of one-class modeling.

摘要

单类建模是一种基于主成分分析(PCA)的有监督多变量植物鉴定方法,该方法仅基于参考样本的特征构建模型,并使用Q统计量作为综合度量。如果测试样本的综合度量落在模型范围内,则判断其为相似(真实)样本;如果该度量超出模型范围,则判断其为不同(掺假或污染)样本。本综述首先考虑影响鉴定的三个主要因素:变量数量(单变量与多变量)、类别数量(单类与多类)以及分析类型(定量与定性)。多变量分析常用于鉴定,能更广泛地涵盖样本的身份特征。通过综合度量,多变量方法类似于单变量方法。单类建模和多类建模采用不同的鉴定方法,单类建模更灵活。虽然迄今为止大多数方法都有定量基础,但定性方法也是可行的。本综述重点关注基于PCA的多变量单类建模。文中给出了单类建模在西洋参、黑升麻和玛咖鉴定中的应用实例。这些实例展示了单类建模的实用性和灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d23/11983402/36c8bfe6e22f/fphar-16-1504230-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验