Suppr超能文献

纳米晶体压缩残余应力:一种强化骨细胞性和无骨细胞性鱼类骨棘的策略。

Nanocrystal Compressive Residual Stresses: A Strategy to Strengthen the Bony Spines of Osteocytic and Anosteocytic Fish.

作者信息

Silveira Andreia, Davydok Anton, Krywka Christina, Scheel Mario, Weitkamp Timm, Fleck Claudia, Shahar Ron, Zaslansky Paul

机构信息

Department for Restorative, Preventive and Pediatric Dentistry, Charité-Universitaetsmedizin, 14197, Berlin, Germany.

Institute of Materials Physics, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany.

出版信息

Adv Sci (Weinh). 2025 May;12(20):e2410617. doi: 10.1002/advs.202410617. Epub 2025 Apr 11.

Abstract

Bone is a living tissue in which communicating cells, osteocytes, are assumed to be vital for tissue turnover and adaptation. Interestingly however, most advanced teleost fish do not possess osteocyte-mediated porosity, prompting intriguing questions about alternative material-strategies for these bones to cope with damage. Using advanced imaging techniques, including phase-contrast enhanced (PCE) microtomography (µCT) and nanotomography (nanoCT), X-ray fluorescence (XRF), and diffraction (XRD) tomography, the micro- and nano-architectures of osteocytic zebrafish are compared with anosteocytic medaka fishbone. PCE µCT and Zernike phase-contrast nanoCT showed a lack of porosity in medaka bone and 0.75 - 2.26% osteocytic porosity in zebrafish. Both fish species have similar mineralized collagen fibril arrangements containing calcium (Ca) and traces of strontium (Sr) with increased zinc (Zn) localized on the outer bone regions. Medaka bones exhibit reduced apatite nanocrystal lattice spacings on the outer surfaces. Indeed we find higher compressive residual strains (-0.100 ± 0.02) compared to zebrafish (-0.071 ± 0.03). We propose that medaka bone evolved to replace the mechanosensitive osteocytic network by entrapping protective residual strains between collagen nanofibers and mineral crystals. These strains may enhance fracture toughness while making this nanocomposite well-suited for sustaining repeated loading cycles, thus reducing the metabolic costs associated with housing a large network of cells.

摘要

骨骼是一种活组织,其中相互连通的细胞——骨细胞,被认为对组织更新和适应性至关重要。然而,有趣的是,大多数高等硬骨鱼并不具备骨细胞介导的孔隙结构,这引发了关于这些骨骼应对损伤的替代材料策略的有趣问题。利用先进的成像技术,包括相衬增强(PCE)显微断层扫描(µCT)和纳米断层扫描(nanoCT)、X射线荧光(XRF)以及衍射(XRD)断层扫描,将有骨细胞的斑马鱼骨的微观和纳米结构与无骨细胞的青鳉鱼骨进行了比较。PCE µCT和泽尼克相衬纳米CT显示,青鳉骨缺乏孔隙结构,而斑马鱼骨的骨细胞孔隙率为0.75 - 2.26%。两种鱼类都有相似的矿化胶原纤维排列,含有钙(Ca)和微量的锶(Sr),且在外骨区域锌(Zn)含量增加。青鳉骨在外表面的磷灰石纳米晶格间距减小。事实上,我们发现与斑马鱼(-0.071 ± 0.03)相比,青鳉骨具有更高的压缩残余应变(-0.100 ± 0.02)。我们提出,青鳉骨通过在胶原纳米纤维和矿物晶体之间截留保护性残余应变,进化出取代机械敏感骨细胞网络的结构。这些应变可能会提高断裂韧性,同时使这种纳米复合材料非常适合承受反复的加载循环,从而降低与容纳大量细胞网络相关的代谢成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9b/12120745/5e654c08537d/ADVS-12-2410617-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验