Suppr超能文献

嵌入硼、氮共掺杂中空碳纤维的缺电子碳化钼纳米团簇用于电催化硝酸盐还原制氨

Electron-Deficient MoC Nanoclusters Embedded B, N Co-Doped Hollow Carbon Fibers for Electrocatalytic Nitrate Reduction to Ammonia.

作者信息

He Ruifang, Sun Lu, Ren Ke, Li Xiaona, Tian Peng, Ning Guiling, Ye Junwei

机构信息

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

出版信息

ChemSusChem. 2025 Jul 1;18(13):e202500059. doi: 10.1002/cssc.202500059. Epub 2025 May 7.

Abstract

Ammonia (NH) production from electrocatalytic nitrate reduction reaction (NORR) is anticipated as a promising route to achieve both sustainable NH generation and nitrate water pollution removal. Herein, the molybdenum carbide (MoC) nanoclusters embedded in boron, nitrogen co-doped hollow carbon fibers (MoC@BNHCFs) electrocatalyst is fabricated for NORR by coaxial electrospinning and pyrolysis method. The uniformly dispersed MoC nanoclusters and the B, N doped-carbon layer provide more adsorption sites for nitrate reduction, effectively improving the activity and long-term stability of MoC@BNHCFs. MoC@BNHCFs-2 achieves a maximum NH yield of 6487.43 μg h mg and Faradaic efficiency of 74.5% at -1.1 V (vs. reversible hydrogen electrode). Electrochemical in situ characterizations identify the formation of intermediates and products during the electrocatalytic NO reduction process. Meanwhile, theoretical calculations indicate that electrons transfer from MoC nanoclusters to carbon supports can induce the creation of electron-deficient MoC, thus effectively activating the NO and facilitating the electrochemistry process.

摘要

通过电催化硝酸盐还原反应(NORR)生产氨(NH₃)有望成为实现可持续氨生成和去除硝酸盐水污染的一条有前景的途径。在此,采用同轴电纺丝和热解法制备了嵌入硼、氮共掺杂中空碳纤维(MoC@BNHCFs)的碳化钼(MoC)纳米团簇电催化剂用于NORR。均匀分散的MoC纳米团簇和硼、氮掺杂的碳层为硝酸盐还原提供了更多吸附位点,有效提高了MoC@BNHCFs的活性和长期稳定性。MoC@BNHCFs-2在-1.1 V(相对于可逆氢电极)时实现了6487.43 μg h⁻¹ mg⁻¹的最大氨产率和74.5%的法拉第效率。电化学原位表征确定了电催化NO₃⁻还原过程中中间体和产物的形成。同时,理论计算表明电子从MoC纳米团簇转移到碳载体上可诱导形成缺电子的MoC,从而有效活化NO₃⁻并促进电化学反应过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验