He Ruifang, Sun Lu, Ren Ke, Li Xiaona, Tian Peng, Ning Guiling, Ye Junwei
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
ChemSusChem. 2025 Jul 1;18(13):e202500059. doi: 10.1002/cssc.202500059. Epub 2025 May 7.
Ammonia (NH) production from electrocatalytic nitrate reduction reaction (NORR) is anticipated as a promising route to achieve both sustainable NH generation and nitrate water pollution removal. Herein, the molybdenum carbide (MoC) nanoclusters embedded in boron, nitrogen co-doped hollow carbon fibers (MoC@BNHCFs) electrocatalyst is fabricated for NORR by coaxial electrospinning and pyrolysis method. The uniformly dispersed MoC nanoclusters and the B, N doped-carbon layer provide more adsorption sites for nitrate reduction, effectively improving the activity and long-term stability of MoC@BNHCFs. MoC@BNHCFs-2 achieves a maximum NH yield of 6487.43 μg h mg and Faradaic efficiency of 74.5% at -1.1 V (vs. reversible hydrogen electrode). Electrochemical in situ characterizations identify the formation of intermediates and products during the electrocatalytic NO reduction process. Meanwhile, theoretical calculations indicate that electrons transfer from MoC nanoclusters to carbon supports can induce the creation of electron-deficient MoC, thus effectively activating the NO and facilitating the electrochemistry process.
通过电催化硝酸盐还原反应(NORR)生产氨(NH₃)有望成为实现可持续氨生成和去除硝酸盐水污染的一条有前景的途径。在此,采用同轴电纺丝和热解法制备了嵌入硼、氮共掺杂中空碳纤维(MoC@BNHCFs)的碳化钼(MoC)纳米团簇电催化剂用于NORR。均匀分散的MoC纳米团簇和硼、氮掺杂的碳层为硝酸盐还原提供了更多吸附位点,有效提高了MoC@BNHCFs的活性和长期稳定性。MoC@BNHCFs-2在-1.1 V(相对于可逆氢电极)时实现了6487.43 μg h⁻¹ mg⁻¹的最大氨产率和74.5%的法拉第效率。电化学原位表征确定了电催化NO₃⁻还原过程中中间体和产物的形成。同时,理论计算表明电子从MoC纳米团簇转移到碳载体上可诱导形成缺电子的MoC,从而有效活化NO₃⁻并促进电化学反应过程。