Bilbao Pablo, Silva Thales, Silva Luís O
GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
Sci Adv. 2025 Apr 11;11(15):eadt8912. doi: 10.1126/sciadv.adt8912.
Relativistic plasmas in strong electromagnetic fields exhibit distinct properties compared to classical plasmas. In astrophysical environments, such as neutron stars, white dwarfs, active galactic nuclei, and shocks, relativistic plasmas are pervasive and are expected to play a crucial role in the dynamics of these systems. Despite their significance, experimental and theoretical studies of these plasmas have been limited. Here, we present the first ab initio high-resolution kinetic simulations of relativistic plasmas undergoing synchrotron cooling in a highly magnetized medium. Our results demonstrate that these plasmas spontaneously generate coherent linearly polarized radiation in a wide range of parameters via the electron cyclotron maser instability, with radiative losses altering the saturation mechanism. Thus, the plasma continuously amplify coherent radiation for substantially longer durations of time. These findings highlight fundamental differences in the behavior of relativistic plasmas in strongly magnetized environments and align with astronomical phenomena, such as pulsar emission and fast radio bursts.
与经典等离子体相比,强电磁场中的相对论性等离子体表现出独特的性质。在诸如中子星、白矮星、活动星系核和激波等天体物理环境中,相对论性等离子体普遍存在,并有望在这些系统的动力学中发挥关键作用。尽管它们很重要,但对这些等离子体的实验和理论研究一直有限。在此,我们展示了首个关于相对论性等离子体在高磁化介质中经历同步辐射冷却的从头算高分辨率动力学模拟。我们的结果表明,这些等离子体通过电子回旋脉泽不稳定性在广泛的参数范围内自发产生相干线偏振辐射,辐射损失改变了饱和机制。因此,等离子体在相当长的时间内持续放大相干辐射。这些发现突出了强磁化环境中相对论性等离子体行为的根本差异,并与诸如脉冲星发射和快速射电暴等天文现象相符。