Muteeb Ghazala, Kazi Raisa Nazir Ahmed, Aatif Mohammad, Azhar Asim, Oirdi Mohamed El, Farhan Mohd
Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Department of Respiratory Therapy, College of Applied Medical Science, King Faisal, University, Al-Ahsa, Saudi Arabia.
SLAS Discov. 2025 Jun;33:100232. doi: 10.1016/j.slasd.2025.100232. Epub 2025 Apr 9.
Antimicrobial resistance (AMR) develops into a worldwide health emergency through genetic and biochemical adaptations which enable microorganisms to resist antimicrobial treatment. β-lactamases (blaNDM, blaKPC) and efflux pumps (MexAB-OprM) working with mobile genetic elements facilitate fast proliferation of multidrug-resistant (MDR) and exttreme drug-resistant (XDR) phenotypes thus creating major concerns for healthcare systems and community health as well as the agricultural sector.
The review dissimilarly unifies molecular resistance pathways with public health implications through the study of epidemiological data and monitoring approaches and innovative therapeutic solutions. Previous studies separating their attention between molecular genetics and clinical outcomes have been combined into our approach which delivers an all-encompassing analysis of AMR.
The report investigates the resistance mechanisms which feature enzymatic degradation and efflux pump overexpression together with target modification and horizontal gene transfer because these factors represent important contributors to present-day AMR developments. This review investigates AMR effects on hospital and community environments where it affects pathogens including MRSA, carbapenem-resistant Klebsiella pneumoniae, and drug-resistant Pseudomonas aeruginosa. This document explores modern AMR management methods that comprise WHO GLASS molecular surveillance systems and three innovative strategies such as CRISPR-modified genome editing and bacteriophage treatments along with antimicrobial peptides and artificial intelligence diagnostic tools.
The resolution of AMR needs complete scientific and global operational methods alongside state-of-the-art therapeutic approaches. Worldwide management of drug-resistant infection burden requires both enhanced infection prevention procedures with next-generation antimicrobial strategies to reduce cases effectively.
抗菌药物耐药性(AMR)通过遗传和生化适应发展成为全球卫生紧急情况,这些适应使微生物能够抵抗抗菌治疗。β-内酰胺酶(blaNDM、blaKPC)和与移动遗传元件协同工作的外排泵(MexAB-OprM)促进了多重耐药(MDR)和广泛耐药(XDR)表型的快速增殖,从而给医疗系统、社区卫生以及农业部门带来了重大担忧。
本综述通过研究流行病学数据、监测方法和创新治疗解决方案,以不同方式将具有公共卫生影响的分子耐药途径统一起来。以往将注意力分别集中在分子遗传学和临床结果上的研究已被纳入我们的方法中,该方法对AMR进行了全面分析。
该报告调查了耐药机制,其特征包括酶促降解、外排泵过表达以及靶点修饰和水平基因转移,因为这些因素是当今AMR发展的重要促成因素。本综述研究了AMR对医院和社区环境的影响,它在这些环境中影响包括耐甲氧西林金黄色葡萄球菌、耐碳青霉烯类肺炎克雷伯菌和耐药铜绿假单胞菌在内的病原体。本文探讨了现代AMR管理方法,包括世界卫生组织全球抗菌药物耐药性和使用情况监测系统(WHO GLASS)以及三种创新策略,如CRISPR修饰的基因组编辑、噬菌体治疗以及抗菌肽和人工智能诊断工具。
解决AMR问题需要完整的科学和全球操作方法以及最先进的治疗方法。全球范围内管理耐药感染负担既需要加强感染预防措施,也需要采用新一代抗菌策略以有效减少病例。